Developing a blood fatty acid-based algorithm as an early predictor of insulin resistance: Applying machine learning to harmonized data from prospective cohort studies
开发基于血液脂肪酸的算法作为胰岛素抵抗的早期预测因子:将机器学习应用于前瞻性队列研究的统一数据
基本信息
- 批准号:10696711
- 负责人:
- 金额:$ 32.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-22 至 2025-05-21
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAmericanAreaBehaviorBehavior TherapyBiometryBloodBody mass indexBusinessesCaringClinicalCohort StudiesCollectionDataData SetDevelopmentDiabetes MellitusDiseaseDisease ProgressionDrynessEarly identificationErythrocyte MembraneErythrocytesExerciseFatty AcidsFoodFutureGlucoseGlucose ClampGlycosylated hemoglobin AGoalsHealthHigh PrevalenceHomeHyperglycemiaHyperinsulinismIndividualInsulinInsulin ResistanceInterventionLaboratoriesLife StyleMachine LearningMarketingMeasurementMeasuresMedical Care CostsMetabolicMetabolic DiseasesMetabolic syndromeMinorityModelingMonitorNon-Insulin-Dependent Diabetes MellitusOGTTPancreasPathway interactionsPatientsPatternPhasePlasmaPrediabetes syndromePrevalencePreventive measurePriceProspective StudiesProspective cohortProspective, cohort studyQuality of lifeROC CurveReportingResearch InstituteResearch PersonnelRiskRisk FactorsSamplingScreening procedureSecuritySignal TransductionSpottingsSystemTechnologyTestingTimeUnderserved PopulationWomen&aposs Healthadjudicationbaseburden of illnesscommercializationdata accessdata harmonizationdiabetes riskdietaryearly screeningfasting plasma glucosefollow-uphealth care availabilityhigh riskhigh risk populationimprovedindexinginner cityinnovationinsulin secretioninsulin sensitivityinterestmachine learning algorithmoffspringpredictive markerpreventprospectiverandomized, clinical trialsrural areastatistical and machine learningtype I and type II diabeteswaist circumferencewillingnesswillingness to pay
项目摘要
Project Summary Metabolic diseases, such as Metabolic Syndrome (MetSyn) and type 2 diabetes (T2DM)
affect ~37% and ~10% of Americans, respectively, with a substantial impact on the health, quality of life and
financial security of these individuals. Without the means to identify high risk individuals conveniently and
cheaply, many will find care too little and too late: more than 80% of individuals with pre-diabetes don’t know
they have it. Thus, there is a need for accessible and inexpensive early predictive biomarkers of MetSyn and/or
T2DM to facilitate the early identification of high-risk individuals, providing the time necessary to make
meaningful lifestyle changes to slow or prevent disease progression. Hemoglobin A1C (HbA1c) and fasting
plasma glucose are traditional markers of hyperglycemia and insulin resistance, however, these markers have
significant limitations in that they are measures of existing, not impending, disease. Other tests of insulin
resistance (e.g., oral glucose tolerance tests and hyperinsulinemic euglycemic clamps) are inefficient,
cumbersome for the patient, and expensive; thus, they are also not viable options as early screening tools.
Emerging evidence suggests that erythrocyte (RBC) fatty acid (FAs) profiles may serve as an early signal of
impending hyperglycemia up to 5 years before T2DM develops regardless of whether insulin sensitivity, insulin
secretion and glycemic status are known. As a clinical laboratory that specializes in providing FA
measurements, interpretation and customized behavioral interventions, OmegaQuant Analytics (OQA)
supports a large and growing customer base of researchers, clinicians, businesses, and individuals. OQA has
measured full FA profiles (28 FAs) on numerous randomized clinical trials and prospective cohort studies.
Furthermore, OQA is a leader in the at-home FA testing market through its innovative dried blood spot
collection system, testing almost 40,000 samples annually. Through a partnership with the Fatty Acid Research
Institute (FA expertise; biostatistical support; data access), we propose to develop highly predictive metabolic
indices from FA profiles using an innovative approach leveraging existing prospective cohort data. We will do
this by (Aim 1) predicting future MetSyn or T2DM status from an RBC FA signature using a harmonized
dataset from five leading prospective cohort studies yielding a sample of 10,264 individuals (including 1,173
minorities). Prospective statistical predictions using the harmonized data sets will yield the FA Metabolic Index
(FAMI) and FA Diabetes Index (FADI). We will then (Aim 2) explore how FAMI and FADI can be leveraged to
profitability by creating interpretative reports for FAMI and FADI, providing an understanding and actionable set
of steps to change dietary behaviors to modify MetSyn/T2DM risk and exploring willingness of clinicians,
laboratories and individuals to purchase the tests. These two simple, early-warning tests will allow for targeted
intervention of individuals at high-risk for developing MetSyn and/or T2DM, ultimately leading to substantial
reductions in the prevalence and societal burden of this disease.
代谢性疾病,如代谢综合征(MetSyn)和2型糖尿病(T2DM)
分别影响约37%和约10%的美国人,对健康、生活质量和
这些人的经济安全。没有办法方便地识别高风险个人,
便宜,许多人会发现照顾太少,太迟:超过80%的人与糖尿病前期不知道
因此,需要可获得且便宜的MetSyn和/或MetSyn的早期预测生物标志物。
2型糖尿病,以促进早期识别高风险的个人,提供必要的时间,使
有意义的生活方式改变,以减缓或预防疾病进展。血红蛋白A1C(HbA1c)和空腹
血浆葡萄糖是高血糖症和胰岛素抵抗的传统标志物,然而,这些标志物
重大局限性在于它们是对现有疾病而不是即将发生的疾病的衡量标准。胰岛素的其他测试
电阻(例如,口服葡萄糖耐量试验和高胰岛素正葡萄糖钳夹)是无效的,
对于患者来说很麻烦,而且价格昂贵;因此,它们作为早期筛查工具也不是可行的选择。
新出现的证据表明,红细胞(RBC)脂肪酸(FAs)谱可能作为一个早期信号,
无论胰岛素敏感性、胰岛素
分泌和血糖状态是已知的。作为一个临床实验室,专门提供FA
测量、解释和定制行为干预,OmegaQuant Analytics(OQA)
支持研究人员、临床医生、企业和个人的庞大且不断增长的客户群。OQA有
在许多随机临床试验和前瞻性队列研究中测量了完整的FA曲线(28个FA)。
此外,OQA通过其创新的干血斑,
收集系统,每年检测近40,000个样本。通过与脂肪酸研究的合作,
研究所(FA专业知识;生物统计支持;数据访问),我们建议开发高度预测性的代谢
使用创新方法利用现有前瞻性队列数据从FA配置文件中提取指数。我们将尽
这是通过(目的1)使用协调的
来自五项领先的前瞻性队列研究的数据集,产生了10,264名个体(包括1,173名
少数民族)。使用协调数据集的前瞻性统计预测将产生FA代谢指数
(FAMI)和FA糖尿病指数(FADI)。然后,我们将(目标2)探讨如何利用FAMI和FADI,
通过为FAMI和FADI创建解释性报告,
改变饮食行为以改变MetSyn/T2DM风险的步骤,并探索临床医生的意愿,
实验室和个人购买测试。这两个简单的早期预警测试将允许有针对性的
干预处于发展MetSyn和/或T2DM的高风险的个体,最终导致显著的
减少这一疾病的流行和社会负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristina Harris Jackson其他文献
Kristina Harris Jackson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Research Grant