A low-cost, multiplexed digital high resolution melt platform for DNA methylation-based detection and identification of cancers in liquid biopsies

一种低成本、多重数字高分辨率熔解平台,用于液体活检中基于 DNA 甲基化的癌症检测和识别

基本信息

  • 批准号:
    10697370
  • 负责人:
  • 金额:
    $ 41.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-05 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY This year alone, over 600,000 people in the U.S. will die from cancer, with each patient losing an average of 15.6 years of life. However, upwards of 25% of these deaths could likely be avoided if these cancers were detected at earlier stages. One particularly attractive approach for cancer diagnostics is the use of circulating cell-free DNA (cfDNA) from so-called “liquid-biopsies” of patient-derived serum/plasma as these samples are often enriched in genetic material from tissues, including tumors, located throughout the body. Nonetheless, tumor specific alterations, such as mutations and aberrant DNA methylation, are typically only present at extraordinarily low copy numbers (< 10 copies/ml) and fractional concentrations (< 0.1%) within a large background of healthy-tissue DNA. This issue in particular has proven problematic for current technologies and has thus far precluded development of a cfDNA diagnostic method that is simple, low-cost and, most importantly, able to detect cancer at stages sufficiently early to improve patient outcomes. In the present project, we aim to develop REM-DREAMing: a low-cost, highly-multiplexed digital methylation analysis platform that provides highly-sensitive and parallelized assessment of cfDNA methylation patterns to enable detection of rare tumor DNA, even from early-stage cancers. At the core of the REM-DREAMing platform is a unique, locus-specific DNA methylation assay, called DREAMing (Discrimination of Rare EpiAlleles by Melt), that has been successfully developed by our lab to provide detection and absolute quantification of cancer-specific DNA methylation even at extremely low fractions (<< 0.1%). Recently, we successfully incorporated the DREAMing assay into a massively-parallel digital microfluidic array to enable detection of a single copy of aberrantly-methylated DNA in a background of 2 million unmethylated alleles. Here, we propose to dramatically enhance the microfluidic DREAMing approach by significantly expanding its digitization power and incorporating novel, methylation-agnostic probes with a unique ratiometric fluorescence multiplexing scheme to achieve simultaneous digital assessment of a panel of 50 “cancer-detecting” and “cancer-identifying” methylation biomarkers, enabling liquid-biopsy-based detection and identification of early-stage cancers at a cost of only a few dollars per sample. To achieve this goal, we plan to accomplish the following aims: (1) Develop dual, 27-plex DREAMing assay panels targeting a panel of 50 pan-cancer-detecting and cancer-identifying methylation biomarkers. (2) Design, fabricate and validate a dual 400k-well, 4-color fluorescence-decoding dHRM platform to perform parallelized REM-DREAMing for simultaneous detection and identification of 50 methylation biomarkers. and (3) Assess and benchmark the ability of the REM-DREAMing platform to detect and identify six different cancer types from liquid biopsies.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Russell Pisanic II其他文献

Thomas Russell Pisanic II的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Russell Pisanic II', 18)}}的其他基金

Development of a low-cost epigenetic screening assay for Pap specimen-based detection of early-stage ovarian cancer in high-risk women
开发一种低成本表观遗传筛查方法,用于基于巴氏标本的高危女性早期卵巢癌检测
  • 批准号:
    10428656
  • 财政年份:
    2021
  • 资助金额:
    $ 41.35万
  • 项目类别:
Development of a low-cost epigenetic screening assay for Pap specimen-based detection of early-stage ovarian cancer in high-risk women
开发一种低成本表观遗传筛查方法,用于基于巴氏标本的高危女性早期卵巢癌检测
  • 批准号:
    10317707
  • 财政年份:
    2021
  • 资助金额:
    $ 41.35万
  • 项目类别:
Development of a low-cost epigenetic screening assay for Pap specimen-based detection of early-stage ovarian cancer in high-risk women
开发一种低成本表观遗传筛查方法,用于基于巴氏标本的高危女性早期卵巢癌检测
  • 批准号:
    10678833
  • 财政年份:
    2021
  • 资助金额:
    $ 41.35万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 41.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了