Education Pathways for Biomedical Data Science (R25)

生物医学数据科学教育途径 (R25)

基本信息

项目摘要

Project Summary / Abstract This project brings together Drexel University and the Children’s Hospital of Philadelphia (CHOP) to create an adaptive Biomedical Data Science education program to empower researchers to learn and use emerging data science methods. We propose an in-line program to prepare researchers for data-driven work directly in their current field, while also identifying avenues for interdisciplinary collaboration. We will develop novel curricula pathways, leverage existing educational resources, create bridge materials, and provide practicum “lab” activities matching domain-specific projects to participants for hands-on experience. Educational Pathways in Biomedical Data Science will collaborate with the CHOP Office of Academic Training and Outreach Programs to engage a diverse learner audience in novel pedagogical research. Learners will be recruited from active participants in many existing CHOP training initiatives, including a novel data science education program, graduate student training, postdoc mentorship, physician fellowship research, and clinical research staff training. After enrollment, education program managers will cluster participants into collaborative communities of practice where they will receive mentorship and contribute to development of pathways. We acknowledge that we are still learning the most effective interventions for biomedical data science education, both within our specific communities and broadly within medical education (e.g. Federer et al., 2015; Rowhani-Faarid, Allen, and Barnett, 2017). We will develop new evidence of gaps in knowledge, skills, and attitudes among learners. We will develop and implement biomedical data science literacy instruments based on emerging scholarship. We will also gather learner feedback via mixed methods to adapt and evolve our modular resources, ensure robust learner outcomes, and align deliverables with the NIH Strategic Plan for Data Science. Data Science instruction for researchers outside of traditional computer and information sciences is a concrete step toward data-driven scientific literacy for all. We will ensure that participants emerge from this program with computational and algorithmic literacy solidified through hands-on experience. For non-computing researchers, we also will provide the foundational data fluencies necessary for individuals to contribute meaningfully to machine learning research, which will enable data-driven systems, insight-to-decision transformation, decision- making, and data-driven decision management. Finally, for all participants, we will strive to help individuals from a broad spectrum of backgrounds and identities identify new directions in which to develop their careers.
项目摘要/摘要 该项目将德雷塞尔大学和费城儿童医院(CHOP)结合在一起,创建了一个 自适应生物医学数据科学教育计划,使研究人员能够学习和使用新兴数据 科学的方法。我们提出了一个内联计划,让研究人员为数据驱动的工作做好准备 在确定跨学科合作途径的同时,对当前的领域进行了评估。我们将开发新的课程 途径,利用现有的教育资源,创造桥梁材料,并提供实践“实验室” 将特定领域的项目与参与者相匹配的活动,以获得实践经验。 生物医学数据科学的教育途径将与学术培训印章办公室合作 以及外联计划,以吸引不同的学习者受众参与新颖的教学研究。学员将成为 从许多现有CHOP培训计划的积极参与者中招聘,包括一项新的数据科学 教育计划、研究生培训、博士后指导、医生奖学金研究和临床 研究人员培训。注册后,教育项目经理将参与者分组为协作型 在实践社区中,他们将接受指导,并为发展道路做出贡献。 我们承认,我们仍在学习生物医学数据科学最有效的干预措施 教育,既在我们特定的社区内,也在医学教育中(例如,费德勒等人, 2015年;鲁哈尼-法里德、艾伦和巴尼特,2017年)。我们将开发新的证据,证明在知识、技能、 以及学习者的态度。 开发和实施生物医学数据科学素养工具 以新兴学术为基础。我们还将通过混合方法收集学习者的反馈,以适应和发展 我们的模块化资源,确保强大的学员成果,并使交付成果与NIH战略计划保持一致 数据科学。 数据科学对传统计算机和信息科学以外的研究人员的指导是一个具体的 向数据驱动的全民科学素养迈进一步。我们将确保参与者从该计划中走出来 通过实践经验巩固了计算和算法方面的知识。对于非计算研究人员来说, 我们还将提供个人做出有意义贡献所需的基础数据流畅性 机器学习研究,它将使数据驱动系统、洞察力到决策的转换、决策- 和数据驱动的决策管理。最后,对于所有参与者,我们将努力帮助个人 从广泛的背景和身份中确定发展职业生涯的新方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Wayland Pennington其他文献

Jeffrey Wayland Pennington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Wayland Pennington', 18)}}的其他基金

Education Pathways for Biomedical Data Science (R25)
生物医学数据科学教育途径 (R25)
  • 批准号:
    10435509
  • 财政年份:
    2021
  • 资助金额:
    $ 8.63万
  • 项目类别:
Education Pathways for Biomedical Data Science (R25)
生物医学数据科学教育途径 (R25)
  • 批准号:
    10199482
  • 财政年份:
    2021
  • 资助金额:
    $ 8.63万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了