Resource Core

资源核心

基本信息

项目摘要

SUMMARY/ABSTRACT – RESOURCE CORE The Resource Core of the Center on Causal Data Science for Child and Adolescent Maltreatment Prevention (CHAMP Center) will play an indispensable role in discovering of new knowledge about factors that both predict and directly cause maltreatment (Project 1), translating these insights into tools accessible to those in a position to prevent maltreatment (Project 1), and assessing the validity of these new insights and tools in scalable interventions tested in field trials (Project 2). It will also inform the dissemination of knowledge, tools, and educational vehicles for scientists on the application of causal data science to maltreatment exposures and maltreatment-related outcomes by the Dissemination and Outreach Core. Notwithstanding the tremendous potential of predictive and causal knowledge that can be scaled, predictive and causal data approaches are not yet widely used in efforts to anticipate and prevent child maltreatment. Their use requires access to the state- of-the-art computational infrastructure, deep intellectual and technical skills, and high-quality tools for data analysis that the Resource Core brings to this Center. Translating the knowledge gained by complex modeling into decision support tools that can be broadly disseminated also requires specialized expertise. By providing centralized services to both Projects 1 and 2, while informing the activities of the Dissemination and Outreach Core and supporting development needs, the Resource Core will play a crucial role in providing the CHAMP Center with optimally efficient and cost-effective analyses and training.
摘要/摘要-资源核心 儿童和青少年虐待预防因果数据科学中心的资源核心 (CHAMP中心)将在发现有关因素的新知识方面发挥不可或缺的作用, 预测并直接导致虐待(项目1),将这些见解转化为那些在一个 防止虐待的立场(项目1),并评估这些新见解和工具的有效性 在实地试验中测试的可扩展干预措施(项目2)。它还将为知识、工具 为科学家提供的关于因果数据科学在虐待暴露方面的应用的教育工具 传播和外展核心小组在与虐待有关的成果方面取得的进展。尽管巨大的 预测性和因果性知识的潜力是可以衡量的,预测性和因果性数据方法不是 但在预测和防止虐待儿童的努力中却被广泛使用。它们的使用需要进入国家- 先进的计算基础设施、深厚的知识和技术技能以及高质量的数据工具 资源核心带给本中心的分析。翻译通过复杂建模获得的知识 此外,将决策支持工具转化为可广泛传播的工具也需要专门知识。通过提供 为项目1和项目2提供集中服务,同时为传播和外联活动提供信息, 资源核心将在提供CHAMP方面发挥关键作用, 以最佳效率和成本效益的分析和培训为中心。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erich Kummerfeld其他文献

Erich Kummerfeld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erich Kummerfeld', 18)}}的其他基金

Bioinformatics for post-traumatic stress
创伤后应激的生物信息学
  • 批准号:
    10412074
  • 财政年份:
    2018
  • 资助金额:
    $ 19.06万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 19.06万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 19.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了