Understanding lactate catabolism by BACH1 in triple negative breast cancer
了解三阴性乳腺癌中 BACH1 的乳酸分解代谢
基本信息
- 批准号:10672893
- 负责人:
- 金额:$ 48.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Intermittent PorphyriaAnimal ModelAntineoplastic AgentsBACH1 geneBindingBiochemical PathwayBiological AssayBreast Cancer CellBreast Cancer ModelBreast Cancer PatientBreast Cancer TreatmentCancer Cell GrowthCarbonCatabolismCellsCellular biologyClinical DataClinical ResearchCombined Modality TherapyConsumptionDataDependenceDevelopmentDrug DesignDrug TargetingEnzymesFDA approvedGene ExpressionGenesGeneticGenetic TranscriptionGoalsHeminHeterogeneityIn VitroIndividualLabelLactate DehydrogenaseLactate TransporterLinkMalignant NeoplasmsMammary NeoplasmsMessenger RNAMetabolicMetabolic PathwayMetabolismMitochondriaMolecularMolecular BiologyMusNatureNeoplasm MetastasisPathway interactionsPatient-Focused OutcomesPatientsPharmaceutical PreparationsPlayPopulationPredispositionPublishingRegulationRepressionResearchResearch PersonnelResearch ProposalsRespirationRoleSourceTestingTherapeuticTherapeutic InterventionTranscriptTranscription RepressorTranscriptional RegulationWorkanti-canceranti-cancer therapeuticbiochemical toolscancer cellcancer therapyclinically significantgene repressionheme aimprovedin vivoinhibitorinnovationinsightmRNA Expressionmalignant breast neoplasmmetabolic phenotypemetabolomicsmitochondrial metabolismmouse modelmultidisciplinaryneoplastic cellnovelnovel strategiesoxidationpatient derived xenograft modelpharmacologicprogramspyruvate carrierresponsesingle-cell RNA sequencingskillssmall hairpin RNAtargeted treatmenttherapeutic targettherapeutically effectivetooltranscription factortranscriptomicstriple-negative invasive breast carcinomatumortumor heterogeneitytumor metabolism
项目摘要
PROJECT SUMMARY
Primary metabolic pathways in cancer are useful targets for therapeutic intervention. However, intratumoral
heterogeneity in cancer metabolism is a major challenge for anti-cancer therapy. Reducing metabolic variance
by reprogramming cancer metabolism is essential to enhance efficacy of inhibitors targeting metabolism. Our
long-term goal is to overcome metabolic heterogeneity through reprogramming metabolic networks to increase
the number of cancer cells vulnerable to metabolic inhibitors. To reach this goal, our novel strategy is to reduce
metabolic variance among cancer cells by targeting BACH1, a master regulator of metabolism-related
transcription in triple negative breast cancer (TNBC), to obtain maximal response of drugs targeting metabolic
pathways. Our previous molecular and metabolomic profiling of breast tumors revealed that BACH1 suppresses
mitochondrial metabolism. Thus, BACH1 depletion made TNBC cells more sensitive to mitochondrial inhibitors.
These findings led to the novel concept that BACH1 depletion increases the proportion of cancer cells with higher
dependency on mitochondrial respiration and restricted tumor metabolic plasticity. Our preliminary studies
indicate that BACH1 also suppresses lactate catabolism, which is a primary pathway for lactate oxidation in
mitochondria of cancer cells. In support of this finding, recent clinical studies showed that lactate catabolism
depends on lactate transporter (MCT1). In TNBC cells, BACH1 represses transcription of genes that encode
enzymes involved in lactate catabolism, including lactate transporter (MCT1), lactate dehydrogenase B (LDHB),
and mitochondrial pyruvate carriers. Specifically, BACH1 depletion sensitized cancer cells to blockade of MCT1
or LDHB. Based on our preliminary data, we hypothesize that BACH1 is the key determinant of whether cancer
cells produce lactate or consume lactate. The primary objective of this proposed study is to link BACH1
contribution to lactate catabolic variance, and to better understand regulation of lactate oxidation in TNBC. Using
multiple innovative approaches, including in vitro and in vivo breast tumor models and a combination of
transcriptomics and metabolomics, we will interrogate BACH1 regulation of lactate catabolism and define the
underlying molecular regulatory mechanism in breast cancer cells. Furthermore, using patient-derived xenograft
and syngeneic mouse models, we will investigate whether BACH1 inhibition (through the repurposed non-toxic
FDA-approved drug, panhematin) increases breast tumor vulnerability to drugs targeting the lactate transporter
MCT1. By combining cell biology and in vivo assays, this study will provide comprehensive insights into how
cancer cells use lactate as a substrate, whether metabolic variances are reduced by targeting BACH1, and how
to achieve better therapeutic strategies using lactate catabolism inhibitors.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiyoung Lee其他文献
Jiyoung Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists