Development of Nanoneedle Array for Painless and Long-Term Sustained Intraocular Drug Delivery
开发用于无痛、长期持续眼内药物输送的纳米针阵列
基本信息
- 批准号:10673052
- 负责人:
- 金额:$ 38.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityAnti-Inflammatory AgentsAreaBindingBlindnessBlood VesselsBlurred visionChemistryChoroidal NeovascularizationChronicClinicalComplexContact LensesCorneaCorneal NeovascularizationCustomDevelopmentDiseaseDoseDrainage procedureDropsDrug CompoundingDrug Delivery SystemsDry Eye SyndromesEffectivenessEngineeringExtravasationEyeEye diseasesEyedropsFluorescein AngiographyGrowthHistologyHourHumanImmunohistochemistryIn VitroInfectionInflammationInvadedKeratoplastyKineticsLasersLiquid substanceLow-Level Laser TherapyMechanicsModelingMorphologyNatureNeedlesOperative Surgical ProceduresOryctolagus cuniculusPainPainlessPatientsPerformancePersonsPharmaceutical PreparationsPhotographyPolymersPorosityPropertyRadialResearchRetinaRiskRisk FactorsShapesSiliconStructureSurfaceSurgical suturesTechniquesTestingTherapeuticTimeTissuesTranslatingTraumaTreatment EfficacyValidationVascular Endothelial Growth FactorsVisualWaterbasebiomaterial compatibilitycell injurychemical conjugateclinical implementationclinical practicecrystallinitydesigndrug release profileimprovedin vivoin vivo Modelin vivo evaluationinnovationlimbalminiaturizeminimally invasivenanofabricationnanomaterialsnanoneedlenanoscaleprototypeside effectstandard carestem cellstechnology platformtoolwater solubility
项目摘要
PROJECT SUMMARY/ABSTRACT
Corneal neovascularization (CNV), or the invasion of new blood vessels into the avascular cornea, remains
one of the major causes of blindness worldwide. Topical eye drop therapy serves as the most easily accessible
and noninvasive treatment of CNV, but its therapeutic efficacy is limited due to the corneal barriers and
nasolacrimal drainage that quickly eliminates eye drops within a few minutes. Recent advances of biodegradable
microneedles have led to the development of many strategies for intraocular drug delivery through the corneal
barriers, which increases therapeutic efficacy. However, the clinical implementation of these microneedles in
human eyes is often impeded due to their relatively large size for the human cornea and rapidly dissolving nature
(typically, within 15 minutes-2 hours), which causes pain and limited therapeutic efficacy, respectively. The
research endeavors of this project will focus on the development of a new class of intraocular drug delivery
platform made from fully-miniaturized (i.e., at nanoscale) and slowly-biodegradable silicon nanoneedles that are
> 30-fold smaller and provide > 10-fold slower degradation rate compared to current biodegradable
microneedles. The silicon nanoneedles will be built upon a water-soluble contact lens that offers excellent
biocompatibility, softness, rapid degradability in tear fluid (within no more than 30 seconds), and optimal
curvature to fit a variety of corneal shapes (8.3-9.0 mm base curve radii). These aspects are essential to allow
for the minimally-invasive, painless, and long-term (over days) sustained delivery of ocular drugs through the
corneal barriers. In this project, we will reveal the structure-property-performance relationship of the silicon
nanoneedles with various size, shape, aspect ratio, and surface porosity in vitro and ex vivo. We will also
evaluate the biosafety, therapeutic efficacy, and side-effects of the silicon nanoneedles in a well-established
rabbit CNV model in vivo, as compared to conventional anti-vascular endothelial growth factor therapy (anti-
VEGF) and laser therapy. Because the materials used for both the nanoneedles and water-soluble contact lens
are already in clinical use, this intraocular drug delivery platform can be rapidly translated into clinical practice
for the treatment of CNV in human eyes. Furthermore, the established intraocular drug delivery platform will be
also useful for the treatment of other chronic ocular diseases, including corneal, retinal, and choroidal
neovascularization.
项目总结/文摘
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multimodal In Vivo Imaging of Retinal and Choroidal Vascular Occlusion.
视网膜和脉络膜血管闭塞的多模态体内成像。
- DOI:10.3390/photonics9030201
- 发表时间:2022
- 期刊:
- 影响因子:2.4
- 作者:Nguyen,VanPhuc;Zhu,Tianye;Henry,Jessica;Zhang,Wei;Wang,Xueding;Paulus,YannisM
- 通讯作者:Paulus,YannisM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chi Hwan Lee其他文献
Chi Hwan Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chi Hwan Lee', 18)}}的其他基金
Development of Nanoneedle Array for Painless and Long-Term Sustained Intraocular Drug Delivery
开发用于无痛、长期持续眼内药物输送的纳米针阵列
- 批准号:
10280693 - 财政年份:2021
- 资助金额:
$ 38.26万 - 项目类别:
Development of Nanoneedle Array for Painless and Long-Term Sustained Intraocular Drug Delivery
开发用于无痛、长期持续眼内药物输送的纳米针阵列
- 批准号:
10480936 - 财政年份:2021
- 资助金额:
$ 38.26万 - 项目类别:
Development and Validation of Mechanically Compliant Wearable Monitoring Systems for Swallowing Function and Disorders
用于吞咽功能和疾病的机械兼容可穿戴监测系统的开发和验证
- 批准号:
9979848 - 财政年份:2019
- 资助金额:
$ 38.26万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Continuing Grant