Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
基本信息
- 批准号:10673857
- 负责人:
- 金额:$ 37.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccountingAddressAgingAlgorithmsAlzheimer disease preventionAlzheimer&aposs DiseaseAlzheimer&aposs disease riskApplied GeneticsAutomobile DrivingBioinformaticsBiologicalBiologyBloodBrainBrain DiseasesBrain imagingCardiacCardiovascular systemCatalogsClinicalCognitionCognitiveComplexDataDementiaDeteriorationDiagnosisDiagnosticDimensionsDiseaseDisease ProgressionElderlyFunctional disorderGene ExpressionGenesGeneticGenetic RiskGenomicsGenotypeGenotype-Tissue Expression ProjectHeartHumanImpaired cognitionIndividualInstitutionInterventionInvestigationKnowledgeMeasurementMeasuresMediatingMedical ResearchMemoryMetabolicMethodsModelingMolecularMyocardialNational Institute of Neurological Disorders and StrokeNerve DegenerationNeural Network SimulationNeurobiologyNeuropsychologyOntologyOutcomeParticipantPathway interactionsPatternPersonsPharmaceutical PreparationsPhenotypePilot ProjectsRecoveryResearch InstituteRiskRisk FactorsScientistSignal TransductionSourceStrategic PlanningStructureSymptomsSystemTestingTimeTissue-Specific Gene ExpressionTissuesTrainingTranscriptbrain basedcardiovascular disorder riskclinical riskcognitive performancecohortdeep neural networkdemographicsdifferential expressionexperiencefunctional disabilitygene interactiongene networkgenetic architecturegenome wide association studyimprovedindexinginsightinterestmental statemild cognitive impairmentmultiple data typesnervous system disorderneural networkneurobiological mechanismneuroimagingnovelnovel markerperipheral bloodpolygenic risk scorepreventreligious order studyresiliencerisk varianttooltranscriptometranscriptomics
项目摘要
Over the past decade, scientists have accelerated efforts to better understand Alzheimer’s
disease (AD). Much progress has been made in revealing the genetic architecture of AD and its
common antecedent, mild cognitive impairment (MCI). Yet, some people who incur excessive
AD risk remain cognitively normal. Identifying risk factors for cognitive deterioration in dementia
can guide novel investigations into mechanisms underlying resilience to AD. The best-available
polygenic risk score for AD explains 1.7% of overall liability independent from the leading risk
gene, APOE (accounts for 17.4% of the variance in AD), indicating that a massive portion of
genetic liability remains unresolved. Genetic risk for cardiovascular disease contributes
additional risk for AD, thus a systems-level investigation into how cardiovascular dysfunction
interacts with neurobiological mechanisms of cognitive decline is warranted. Toward this end,
we developed a transcriptome-imputation method—the Brain Gene Expression and Network
Imputation Engine (BrainGENIE)—to measure the brain transcriptome in living individuals using
blood-based gene-expression profiles. BrainGENIE is fundamentally different from other
transcriptome-imputation methods, and captures a much larger proportion of the variance in the
brain transcriptome. BrainGENIE can predict 9–57% of the brain transcriptome, yielding an
approximate 1.8-fold increase in coverage relative to the prior “gold standard” method
PrediXcan, and which greatly improves our statistical power to detect genes and pathways
associated with disease. We have also generalized our BrainGENIE framework to impute
cardiac-specific transcriptome profiles (HeartGENIE), thereby allowing us to investigate brain-
and cardiac-specific transcriptome signatures associated with cognitive deterioration in
dementia. Our proposal contains three Specific Aims to improve our transcriptome-imputation
methods, reveal gene networks and biological pathways in brain and cardiac tissue underlying
cognitive impairment in dementia, and accurately predict an individual’s longitudinal cognitive
decline pave the way to precisely define individuals who are at risk for or resilient to AD. Aim 1:
Optimize our BrainGENIE and HeartGENIE algorithms to improve the accuracy of predicted
gene-expression levels for transcripts in the brain and cardiac tissue that are not currently well
predicted. Aim 2: Identify transcriptomic signatures of cognitive impairment in dementia with
BrainGENIE and HeartGENIE. Aim 3: Develop an neural network to accurately predict cognitive
decline longitudinally. This project will identify reveal multivariate risk factors potentially driving
cognitive decline, a critical step toward improving diagnosis, intervention, and prevention of AD.
在过去的十年里,科学家们加快了更好地了解阿尔茨海默氏症的努力
疾病(AD)。在揭示AD的遗传结构及其与AD发病的关系方面取得了很大进展,
共同前因,轻度认知障碍(MCI)。然而,有些人谁招致过度
AD风险保持认知正常。识别痴呆症认知恶化的风险因素
可以指导新的调查机制的基础弹性AD。最好的可用
AD的多基因风险评分解释了独立于主要风险的总体责任的1.7%
基因,APOE(占AD变异的17.4%),表明大部分的
遗传责任尚未解决。心血管疾病的遗传风险
AD的额外风险,因此,对心血管功能障碍如何
与认知能力下降的神经生物学机制相互作用。为此,
我们开发了一种转录组填补方法--脑基因表达和网络
插补引擎(BrainGENIE)-使用
基于血液的基因表达谱BrainGENIE从根本上不同于其他
转录组插补方法,并捕捉了更大比例的方差在
脑转录组。BrainGENIE可以预测9-57%的大脑转录组,
相对于先前的“金标准”方法,覆盖率增加约1.8倍
PrediXcan,它大大提高了我们检测基因和途径的统计能力
与疾病有关。我们还概括了我们的BrainGENIE框架,
心脏特异性转录组谱(HeartGENIE),从而使我们能够研究大脑-
和与认知功能减退相关的心脏特异性转录组特征
痴呆我们的建议包含三个具体目标,以改善我们的转录组插补
方法,揭示基因网络和生物途径,在大脑和心脏组织的基础上,
认知功能障碍的痴呆症,并准确预测个人的纵向认知
下降铺平了道路,以精确定义谁是在风险或适应AD的个人。目标1:
优化我们的BrainGENIE和HeartGENIE算法,以提高预测的准确性
基因表达水平的转录本在大脑和心脏组织,目前还不好
预测了目的2:确定痴呆症中认知障碍的转录组学特征,
BrainGenie和HeartGenie。目标3:开发一个神经网络来准确预测认知
纵向下降。该项目将识别和揭示潜在的多变量风险因素,
认知能力下降,这是改善AD诊断、干预和预防的关键一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Hess其他文献
Jonathan Hess的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Hess', 18)}}的其他基金
Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
- 批准号:
10515569 - 财政年份:2022
- 资助金额:
$ 37.6万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 37.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 37.6万 - 项目类别:














{{item.name}}会员




