DMS/NIGMS 2: Statistical Network Models for Protein Aggregation
DMS/NIGMS 2:蛋白质聚集的统计网络模型
基本信息
- 批准号:10673898
- 负责人:
- 金额:$ 29.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-24 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAmyloid FibrilsBiologicalBiological ProcessBiophysicsCalibrationCataractCollaborationsCollectionComplexCouplingCrystalline LensCrystallinsDataDevelopmentDiseaseEtiologyFood SafetyHeat shock proteinsHourIndividualMathematicsMedicalMethodsModelingMolecular ChaperonesNational Institute of General Medical SciencesNon-Insulin-Dependent Diabetes MellitusPathway AnalysisPathway interactionsPrion DiseasesProteinsResearchScientistSocial NetworkSocial SciencesSpeedStructureSystemTechniquesTertiary Protein StructureTestingTimeWorkaging populationalpha-Crystallinsamyloid fibril formationbiophysical chemistrybiophysical techniquesexperimental studyinnovationinsightmodel developmentnetwork modelsnovelprotein aggregationprotein functionprotein oligomerprotein structuresocialstatistics
项目摘要
This project centers on the development of statistical network models for understanding the formation of
protein aggregates associated with disease states as well as critical biological processes. Systems of this
type include amyloid fibrils and toxic oligomers, amorphous protein aggregates, and the large, dynamic
complexes formed by small heat shock proteins. Our work combines modeling techniques from the
mathematical social sciences with theoretical and experimental methods from biophysical chemistry,
enabling us to approach biological problems in novel ways. Our technical innovations are focused on
Hamiltonian-driven network models, extending methods originally developed for social networks to capture
interactions among individual proteins in solution over time scales of hours to days.
The project team comprises an established collaboration between a mathematical social scientist and
statistician with expertise in computational statistics and network analysis, and an experimental biophysical
chemist with relevant expertise in protein structure and function. Essential components of this research
include both the creation of modeling techniques that can be used effectively with existing experimental
data, and the collection of new data to validate our modeling work. This work will result in a collection of
novel methods for the study of protein aggregation that are both statistically principled and empirically
grounded, as well as biologically relevant empirical data.
该项目的中心是开发统计网络模型,以了解
与疾病状态以及关键生物过程相关的蛋白质聚集体。该系统
类型包括淀粉样纤维和有毒低聚物,无定形蛋白质聚集体,以及大的,动态的
由小的热休克蛋白形成的复合物。我们的工作结合了建模技术,
数学社会科学与生物物理化学的理论和实验方法,
使我们能够以新的方式解决生物学问题。我们的技术创新专注于
汉密尔顿驱动的网络模型,扩展了最初为社交网络开发的方法,
溶液中的单个蛋白质之间的相互作用在数小时至数天的时间尺度内。
该项目小组由一名数学社会科学家和
统计学家,具有计算统计学和网络分析方面的专业知识,
具有蛋白质结构和功能相关专业知识的化学家。本研究的基本组成部分
包括创建建模技术,可以有效地用于现有的实验
数据,以及收集新数据来验证我们的建模工作。这项工作将导致收集
研究蛋白质聚集的新方法,既有统计学原理,又有经验
接地,以及生物相关的经验数据.
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carter Tribley Butts其他文献
Carter Tribley Butts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carter Tribley Butts', 18)}}的其他基金
DMS/NIGMS 2: Statistical Network Models for Protein Aggregation
DMS/NIGMS 2:蛋白质聚集的统计网络模型
- 批准号:
10493283 - 财政年份:2021
- 资助金额:
$ 29.45万 - 项目类别:
DMS/NIGMS 2: Statistical Network Models for Protein Aggregation
DMS/NIGMS 2:蛋白质聚集的统计网络模型
- 批准号:
10378277 - 财政年份:2021
- 资助金额:
$ 29.45万 - 项目类别: