Risk Assessment of Cerebral Aneurysm Growth with 4D flow MRI
使用 4D 流 MRI 评估脑动脉瘤生长的风险
基本信息
- 批准号:10673860
- 负责人:
- 金额:$ 64.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-03 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:4D MRIAffectAgeAgreementAnatomyAneurysmAngiographyBlood flowBrain AneurysmsCaliforniaCardiovascular systemCerebral AneurysmCerebrovascular CirculationClinicalClinical DataCollaborationsCommunitiesComputer ModelsComputing MethodologiesDataDatabasesDepositionEngineeringEnsureExperimental ModelsFamilyFundingFutureGoalsGrowthGuidelinesHypertensionImageIn VitroInstitutionInterventionIntracranial AneurysmLiquid substanceLocationMagnetic Resonance ImagingMeasurementMeasuresMechanicsMethodologyMethodsModelingMonitorMorbidity - disease rateMorphologyMultiparametric AnalysisNeurologicNeurosurgeonNoiseOperative Surgical ProceduresOutcomePatientsPhasePhysicsPostoperative PeriodProbabilityRecording of previous eventsReproducibilityResearchResolutionResourcesRiskRisk AssessmentRisk FactorsRoleRuptureRuptured AneurysmSan FranciscoShapesSiteStatistical Data InterpretationStatistical ModelsTechniquesThrombusTimeUnited States National Institutes of HealthUniversitiesVelocimetriesWorkartificial intelligence methodclinical centerclinical riskcomorbiditydata sharingdiagnostic toolenhancing factorfollow-uphemodynamicsimaging studyimprovedin vivoindexingmortalityneurovascularnovel strategiesparticlepredictive modelingprospectiveresidencerisk stratificationserial imagingsexshear stresssuccess
项目摘要
PROJECT SUMMARY
The goal of this project is to determine the contribution of hemodynamic factors to risk assessment of unruptured
intracranial aneurysms (UIAs) and calculate these factors from enhanced in vivo 4D flow MRI data. Even though
most UIAs are stable, the majority of UIA patients are offered interventional treatment due to the grave risk
presented if an aneurysm ruptures. Previous studies indicated that in addition to clinical (e.g., age, sex,
comorbidities) and morphological (e.g., location and size) factors, UIA progression is affected by local blood flow
dynamics. Hemodynamic factors associated with UIA growth can be obtained from computational and
experimental models or from 4D flow MRI measurements; however, each approach has limitations. The previous
NIH-funded project focused on developing image-based computational methods for predicting postoperative flow
following interventions. The goal of this renewal is to use the developed framework to improve risk stratification
of UIAs using image-based flow analysis. The proposed project will develop multi-parametric predictive models
that combine clinical and morphological factors with hemodynamic factors calculated from augmented 4D flow
MRI data. The UIA growth predicted by different models will be compared to outcomes observed in longitudinal
imaging studies. The aims of the proposed project are, therefore, to: (1) determine the probability of UIA growth
by utilizing morphological and clinical factors together with hemodynamic factors obtained from computational
and experimental flow models by a) performing statistical analysis based on morphological and clinical factors
obtained from longitudinal imaging, and b) extending statistical model by including hemodynamic factors
computed from patient-specific models; (2) Enhance 4D flow MRI data by a) determining 4D flow reproducibility
and variability with in vitro studies, and b) applying advanced data augmentation methods to improve the
accuracy of calculated hemodynamic factors affecting aneurysm growth; (3) determine the probability of UIA
growth based on multi-parametric analysis utilizing hemodynamic factors calculated from enhanced 4D flow MRI.
Successful completion of the project will resolve the controversy regarding how hemodynamic factors affect
aneurysm growth and establish 4D flow MRI as a diagnostic tool for UIA risk stratification.
This collaborative project engages the cardiovascular engineering group at Purdue University and
neurosurgeons, neuroradiologists and MRI physicists at Northwestern University, University of California San
Francisco and Barrow Neurological Institute. This cross-disciplinary team will bring together experts in
neurovascular surgeries, MRI velocimetry, patient-specific flow computations, experimental fluid mechanics and
statistical analysis. Retrospective and prospective UIAs data obtained from these superb clinical centers will be
used in this study. The outstanding engineering resources available at Purdue and world-class imaging
resources at Northwestern, UC San Francisco and Barrow, as well as existing the data sharing agreements
between these institutions and ongoing collaborations between the PIs, will ensure the project's success.
项目摘要
本项目的目标是确定血流动力学因素对未破裂血管的风险评估的贡献。
颅内动脉瘤(UIA),并根据增强的体内4D流动MRI数据计算这些因素。即使
大多数UIA是稳定的,大多数UIA患者由于严重的风险而接受介入治疗
如果动脉瘤破裂的话。以前的研究表明,除了临床(例如,年龄、性别
合并症)和形态学(例如,位置和大小)因素,UIA进展受局部血流影响
动力学与UIA生长相关的血流动力学因素可以通过计算和
实验模型或4D流动MRI测量;然而,每种方法都有局限性。前一
NIH资助的项目,重点是开发基于图像的计算方法,用于预测术后血流
干预后。此次更新的目标是使用已开发的框架来改进风险分层
使用基于图像的流分析。拟议项目将开发多参数预测模型
该联合收割机将临床和形态学因素与根据增强的4D血流计算的血流动力学因素相结合
MRI数据。不同模型预测的乌干达投资管理局增长将与纵向观察结果进行比较。
影像学研究因此,拟议项目的目的是:(1)确定乌干达投资管理局增长的可能性
通过利用形态学和临床因素以及从计算获得的血流动力学因素,
a)基于形态学和临床因素进行统计分析
从纵向成像获得,以及B)通过包括血液动力学因素来扩展统计模型
(2)通过a)确定4D血流再现性,
和变异性与体外研究,和B)应用先进的数据扩增方法,以提高
计算影响动脉瘤生长的血流动力学因素的准确性;(3)确定UIA的概率
基于多参数分析的生长,利用从增强的4D流动MRI计算的血液动力学因素。
该项目的成功完成将解决关于血流动力学因素如何影响的争议
动脉瘤生长,并建立4D流动MRI作为UIA风险分层的诊断工具。
这个合作项目涉及普渡大学的心血管工程小组,
西北大学、加州大学旧金山分校的神经外科医生、神经放射学家和MRI物理学家
弗朗西斯科和巴罗神经研究所。这个跨学科的团队将汇集专家,
神经血管手术,MRI测速,患者特定流量计算,实验流体力学和
统计分析从这些一流的临床中心获得的回顾性和前瞻性UIA数据将
用于本研究。普渡大学优秀的工程资源和世界一流的成像技术
资源在西北,加州大学旧金山弗朗西斯科和巴罗,以及现有的数据共享协议
这些机构之间的合作以及PI之间的持续合作将确保该项目的成功。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational modeling of flow-altering surgeries in basilar aneurysms.
- DOI:10.1007/s10439-014-1170-x
- 发表时间:2015-05
- 期刊:
- 影响因子:3.8
- 作者:Rayz, V. L.;Abla, A.;Boussel, L.;Leach, J. R.;Acevedo-Bolton, G.;Saloner, D.;Lawton, M. T.
- 通讯作者:Lawton, M. T.
Computational Fluid Dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries.
改变血流手术后基底动脉瘤中造影剂传输的计算流体动力学模型。
- DOI:10.1016/j.jbiomech.2016.11.028
- 发表时间:2017
- 期刊:
- 影响因子:2.4
- 作者:Vali,Alireza;Abla,AdibA;Lawton,MichaelT;Saloner,David;Rayz,VitaliyL
- 通讯作者:Rayz,VitaliyL
Curvelet Transform-based volume fusion for correcting signal loss artifacts in Time-of-Flight Magnetic Resonance Angiography data.
- DOI:10.1016/j.compbiomed.2018.06.008
- 发表时间:2018-08-01
- 期刊:
- 影响因子:7.7
- 作者:Baghaie A;Schnell S;Bakhshinejad A;Fathi MF;D'Souza RM;Rayz VL
- 通讯作者:Rayz VL
Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression.
- DOI:10.1016/j.jbiomech.2017.05.004
- 发表时间:2017-06-14
- 期刊:
- 影响因子:2.4
- 作者:Bakhshinejad A;Baghaie A;Vali A;Saloner D;Rayz VL;D'Souza RM
- 通讯作者:D'Souza RM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sameer A Ansari其他文献
Sameer A Ansari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sameer A Ansari', 18)}}的其他基金
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 64.22万 - 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
- 批准号:
10687912 - 财政年份:2020
- 资助金额:
$ 64.22万 - 项目类别:
Predicting Stroke Risk in Intracranial Atherosclerotic Disease with Novel High Resolution,Functional and Molecular MRI Techniques - Resubmission - 1
利用新型高分辨率、功能性和分子 MRI 技术预测颅内动脉粥样硬化疾病的中风风险 - 重新提交 - 1
- 批准号:
10472015 - 财政年份:2020
- 资助金额:
$ 64.22万 - 项目类别:
Predicting Stroke Risk in Intracranial Atherosclerotic Disease with Novel High Resolution,Functional and Molecular MRI Techniques - Resubmission - 1
利用新型高分辨率、功能性和分子 MRI 技术预测颅内动脉粥样硬化疾病的中风风险 - 重新提交 - 1
- 批准号:
10249333 - 财政年份:2020
- 资助金额:
$ 64.22万 - 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
- 批准号:
10471925 - 财政年份:2020
- 资助金额:
$ 64.22万 - 项目类别:
Non-invasive Evaluation of Intracranial Atherosclerotic Disease Using Hemodynamic Biomarkers
使用血流动力学生物标志物对颅内动脉粥样硬化疾病进行无创评估
- 批准号:
10248545 - 财政年份:2020
- 资助金额:
$ 64.22万 - 项目类别:
Predicting Stroke Risk in Intracranial Atherosclerotic Disease with Novel High Resolution,Functional and Molecular MRI Techniques - Resubmission - 1
利用新型高分辨率、功能性和分子 MRI 技术预测颅内动脉粥样硬化疾病的中风风险 - 重新提交 - 1
- 批准号:
10053118 - 财政年份:2020
- 资助金额:
$ 64.22万 - 项目类别:
High Resolution and Functional MRI Assessment of Intracranial Atherosclerotic Plaque
颅内动脉粥样硬化斑块的高分辨率和功能性 MRI 评估
- 批准号:
9260043 - 财政年份:2016
- 资助金额:
$ 64.22万 - 项目类别:
Risk Assessment of Cerebral Aneurysm Growth with 4D flow MRI
使用 4D 流 MRI 评估脑动脉瘤生长的风险
- 批准号:
10231251 - 财政年份:2013
- 资助金额:
$ 64.22万 - 项目类别:
Risk Assessment of Cerebral Aneurysm Growth with 4D flow MRI
使用 4D 流 MRI 评估脑动脉瘤生长的风险
- 批准号:
10460348 - 财政年份:2013
- 资助金额:
$ 64.22万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 64.22万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 64.22万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 64.22万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 64.22万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 64.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 64.22万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 64.22万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 64.22万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 64.22万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 64.22万 - 项目类别:
Miscellaneous Programs