Function and regulation of kinesin motors in cells

细胞中驱动蛋白马达的功能和调节

基本信息

  • 批准号:
    10674062
  • 负责人:
  • 金额:
    $ 35.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Microtubule-based kinesin and dynein motors drive a plethora of cellular processes, including intracellular transport of cellular cargo, assembly and function of the mitotic spindle, and ciliary function. While the chemical and physical properties of kinesins are well studied in vitro, much less is known about the specific function and regulation of kinesin motors in cells. The KIF3A/KIF3B/KAP motor, subsequently referred to as kinesin-2, drives intracellular transport of various cargos and is also essential for intraflagellar transport (IFT), a specialized transport inside eukaryotic cilia. Cilia are protrusions of the plasma membrane that are supported by a specialized microtubule structure called the axoneme. Primary cilia are solitary and immotile cilia that sense various stimuli in a tissue-specific manner. They can, for instance, sense the presence of morphogens during development, odorants in the nasal cavity, or the strength of urine flow in kidney tubules. Given these essential sensory functions, it is not surprising that ciliary malfunction underlies many diseases that are collectively classified as ciliopathies. During IFT, large protein assemblies called IFT trains are continuously transported within cilia. The IFT trains are loaded with specific cargo at the ciliary base and subsequently recruit kinesin-2 motors for transport along the axonemal microtubules to the tip of the cilium. There, the kinesin-2 motors are released, specific cargo is unloaded, and the trains are remodeled for subsequent transport back to the ciliary base by dynein-2. It is well established that the loss of any subunit of the kinesin-2 motor leads to the complete absence of cilia, and interference with IFT leads to the disappearance of already established cilia. From experiments with the single-celled flagellate Chlamydomonas we know that tubulin influx into cilia via IFT is modulated as a function of cilium length. Based on this finding several recent models aimed at explaining the impact of IFT on cilium length and cilium maintenance attribute high importance to the ciliary tubulin concentration. However, the change in tubulin concentration in these models cannot explain all experimental findings and it is likely that other aspects of IFT in addition to tubulin import are important for ciliary length and structure. Thus, the importance of IFT for the ciliary structure and the regulation of kinesin-2 motor for IFT is only incompletely understood, especially in mammalian systems. In this proposal, we will use a combination of biochemical & cellular assays, protein & genome engineering, and high-resolution microscopy to study how kinesin-2 is regulated for IFT and to delineate the impact of kinesin-2 driven IFT on the structure of mammalian cilia. At the center of our approach are engineered kinesin proteins whose activity can be precisely regulated in time and space externally by the investigator. The work laid out in this proposal will shed light on the function and regulation of kinesin motors in mammalian cilia and thereby promote the development of therapies aimed at alleviating or curing motor protein-associated human diseases.
基于微管的动力蛋白和动力蛋白马达驱动了大量的细胞过程,包括

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin F. Engelke其他文献

Martin F. Engelke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin F. Engelke', 18)}}的其他基金

Function and regulation of kinesin motors in cells
细胞中驱动蛋白马达的功能和调节
  • 批准号:
    10501529
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
Genetic repair of muscular degeneration associated with Duchenne muscular dystrophy
杜氏肌营养不良症相关肌肉变性的基因修复
  • 批准号:
    10439290
  • 财政年份:
    2016
  • 资助金额:
    $ 35.99万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
  • 批准号:
    22KJ2600
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了