Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
基本信息
- 批准号:10674817
- 负责人:
- 金额:$ 1.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmidesAnabolismAnti-Infective AgentsAntibiotic ResistanceAntibioticsAntineoplastic AgentsAreaBiochemicalBiological AssayCatalytic DomainCenters for Disease Control and Prevention (U.S.)Cessation of lifeChimeric ProteinsClinicalComplexCyclizationCytochrome P450Deoxy SugarsDevelopmentDirected Molecular EvolutionEconomicsEngineeringEnvironmentEnzymesErythromycinEstersEvaluationFamilyGatekeepingGenerationsGenetic TranscriptionHealthHumanHydroxylationImmunomodulatorsIn VitroIndustryInfectionMacrolidesMediatingMetabolic BiotransformationMethodsMixed Function OxygenasesMolecularMolecular MachinesNatural ProductsNaturePathway interactionsPharmaceutical PreparationsPharmacologic SubstancePositioning AttributeProcessProductionPropertyProteinsRare Earth MetalsReagentResearchResistanceRibosomesSeriesSynthesis ChemistrySystemTestingTherapeuticTylosinVariantWorkWorld Health Organizationanalogappendageaqueouscatalystcostdesignflexibilityglobal healthglycosylationglycosyltransferasehigh throughput screeningimprovedinterestmembermicroorganismmultidisciplinarymutantnovelnovel therapeuticsoxidationpathogenic bacteriapathogenic microbepicromycinpolyketide synthasepolyketidesscaffoldsecondary metabolitesmall moleculesynthetic enzymetherapeutically effectivetranslation assayvirtualwasting
项目摘要
Proposal Summary
The megasynthases that mediate construction of a vast array of natural products represent some of the most
complex molecular machines in Nature. In the Sherman group, polyketide synthases (PKSs) are of interest from
a multi-disciplinary perspective. PKSs are responsible for the biosynthesis of diverse secondary metabolites of
economic and therapeutic importance including antibiotics, anticancer agents and immune-modulators. Antibiotic
resistance is one of the biggest threats of global health according to the World Health Organization (WHO). The
Centers for Disease Control and Prevention (CDC) showed that in the US alone, it causes more than 2 million
infections and 23,000 deaths a year. These alarming numbers are estimated to continue incrementally every
year, with 10 million estimated deaths worldwide in 2050. For these reasons, we are motivated to utilize PKSs
to facilitate the design and generation of novel antibiotics from the macrolides class to improve the development
of new, effective therapeutics.
A diverse subset of PKSs generate macrocyclic ring systems that are essential for macrolide production, include
pathways from the Pikromycin (Pik), Erythromycin (DEBS) and Tylosin (Tyl) producing microorganisms. In this
project, I will be focusing on the use of synthetic approaches to facilitate assembly of these compounds and
their analogs using biocatalysis and enzyme engineering. The synthesis of diverse polyketide chain elongation
intermediates in conjunction with late-stage biosynthetic machinery (e.g. glycosyltransferases, P450
monooxygenases) facilitates efficient access to a repertoire of novel molecules, which are challenging to
generate using synthetic methods alone. PKS enzymes provide a powerful method to selectively catalyze key
transformations on polyketide chains to generate macrolactones, which can be subsequently converted to novel
macrolide antibiotics.
Previous work in the Sherman lab has revealed that the primary hurdle to applying PKS modules for the
production of diverse macrolactones hinges on the selectivity of the Pik thioesterase (TE) domain. These findings
suggested that the TE functions as a gatekeeper in the processing of unnatural substrates to generate novel
macrocycles. In the proposed research, I plan to (1) Design and synthesize unnatural substrates to explore PKS
selectivity and tolerance toward substrate loading, elongation, and cyclization for the generation of odd-
membered ring macrolactones, (2) Pursue a TE directed evolution approach for improved total turnover, and
expansion of substrate scope to generate new macrolactone products, (3) Apply chemoenzymatic synthesis for
diverse macrolides and determine their bioactivity profile against human bacterial pathogens. These efforts will
be crucial to developing new macrolide antibiotics to control and overcome emerging resistance in human
bacterial pathogens and to improve therapeutic parameters in this important class of anti-infective agents.
提案摘要
介导构建大量天然产物的大合成酶代表了一些最重要的
复杂的分子机器。在谢尔曼组中,聚酮脱氢酶(PKS)是来自
多学科视角。PKS负责多种次生代谢产物的生物合成,
经济和治疗重要性,包括抗生素、抗癌剂和免疫调节剂。抗生素
根据世界卫生组织(WHO),耐药性是全球健康的最大威胁之一。的
疾病控制和预防中心(CDC)显示,仅在美国,它就导致超过200万人死亡。
感染和23,000人死亡。据估计,这些令人震惊的数字将在每一年继续增加。
2050年,全球估计有1000万人死亡。由于这些原因,我们有动机利用PKS
促进大环内酯类新型抗生素的设计和产生,
新的有效的治疗方法。
PKS的不同子集产生对于大环内酯生产必不可少的大环系统,包括
Pikromycin(Pik)、Erythromycin(DEBS)和Tylosin(Tyl)生产微生物的途径。在这
在这个项目中,我将专注于使用合成方法来促进这些化合物的组装,
它们的类似物使用生物催化和酶工程。不同聚酮扩链剂的合成
中间体与后期生物合成机制(如糖基转移酶,P450
单加氧酶)促进有效地获得新分子的库,这对
单独使用合成方法产生。PKS酶提供了一种选择性催化关键酶的强有力的方法,
通过在聚酮链上进行转化以产生大环内酯,其随后可以转化为新的聚酮化合物。
大环内酯类抗生素。
谢尔曼实验室以前的工作表明,将PKS模块应用于
不同大环内酯的生产取决于Pik硫酯酶(TE)结构域的选择性。这些发现
提出TE在处理非天然底物以产生新的
大环化合物在本研究中,我计划(1)设计合成非天然底物来探索PKS
对底物负载、延伸和环化的选择性和耐受性,以产生奇数-
(2)追求TE定向进化方法以提高总周转率,以及
扩大底物范围,生成新的大环内酯类产品;(3)将化学酶法合成应用于
不同的大环内酯类化合物,并确定它们对人类细菌病原体的生物活性谱。这些努力将
对开发新的大环内酯类抗生素以控制和克服人类新出现的耐药性至关重要
细菌病原体,并改善这类重要的抗感染剂的治疗参数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Luisa Adrover-Castellano其他文献
Maria Luisa Adrover-Castellano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Luisa Adrover-Castellano', 18)}}的其他基金
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10311658 - 财政年份:2021
- 资助金额:
$ 1.78万 - 项目类别:
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10470751 - 财政年份:2021
- 资助金额:
$ 1.78万 - 项目类别:
相似海外基金
Collaborative Research: NSF-DFG: CAS: Electrochemical Hydrogenation of Amides and Esters
合作研究:NSF-DFG:CAS:酰胺和酯的电化学氢化
- 批准号:
2140205 - 财政年份:2022
- 资助金额:
$ 1.78万 - 项目类别:
Standard Grant
Collaborative Research: NSF-DFG: CAS: Electrochemical Hydrogenation of Amides and Esters
合作研究:NSF-DFG:CAS:酰胺和酯的电化学氢化
- 批准号:
2140196 - 财政年份:2022
- 资助金额:
$ 1.78万 - 项目类别:
Standard Grant
Atroposelective Synthesis of Hindered Amides - Exploration of Synthetic Peptide Catalysts -
受阻酰胺的天体选择性合成-合成肽催化剂的探索-
- 批准号:
504378162 - 财政年份:2022
- 资助金额:
$ 1.78万 - 项目类别:
WBP Fellowship
Development of Peptide Chemical Modification Enabled by N-Halogenation of Amides
酰胺 N-卤化实现的肽化学修饰的发展
- 批准号:
22H02743 - 财政年份:2022
- 资助金额:
$ 1.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modulating Signaling Endocannabinoids and Fatty Acid Amides
调节信号传导内源性大麻素和脂肪酸酰胺
- 批准号:
10532252 - 财政年份:2021
- 资助金额:
$ 1.78万 - 项目类别:
CAREER: SusChEM: Iron Catalysts for the Reduction of Amides
职业:SusChEM:用于还原酰胺的铁催化剂
- 批准号:
2146728 - 财政年份:2021
- 资助金额:
$ 1.78万 - 项目类别:
Continuing Grant
Modulating Signaling Endocannabinoids and Fatty Acid Amides
调节信号传导内源性大麻素和脂肪酸酰胺
- 批准号:
10399712 - 财政年份:2021
- 资助金额:
$ 1.78万 - 项目类别:
Nickel-Catalyzed Alpha-Arylation of Secondary Amides
镍催化仲酰胺的α-芳基化
- 批准号:
558383-2020 - 财政年份:2020
- 资助金额:
$ 1.78万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Function of primary fatty acid amides as lipid mediators
伯脂肪酸酰胺作为脂质介质的功能
- 批准号:
20K21285 - 财政年份:2020
- 资助金额:
$ 1.78万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Catalytic Synthesis of Pharmaceutical Amides in Water
水中催化合成药用酰胺
- 批准号:
EP/T01430X/1 - 财政年份:2020
- 资助金额:
$ 1.78万 - 项目类别:
Research Grant