Molecular mechanisms of bacterial immune signaling through DNA damage
通过 DNA 损伤产生细菌免疫信号的分子机制
基本信息
- 批准号:10677417
- 负责人:
- 金额:$ 4.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAntiviral ResponseBacteriaBacterial Antibiotic ResistanceBacterial GenomeBacterial InfectionsBacteriophagesBindingBiochemicalBioinformaticsBiological AssayCellsCellular StressClustered Regularly Interspaced Short Palindromic RepeatsComplexDNADNA BindingDNA DamageDNA RepairDNA Restriction-Modification EnzymesEscherichia coliGene ExpressionGenerationsGenetic TranscriptionGenomeImmune TargetingImmune responseImmune signalingImmune systemIndividualInfectionIslandLigand BindingLigandsMainstreamingMediatingModelingModificationMolecularMolecular ConformationMutationNucleic AcidsOligonucleotidesOrangesPeriodicityPlasmidsPopulationProphagesProteinsRegulationResolutionRoleSignal TransductionStructureSystemTestingTranscriptional RegulationViralVirusWorkX-Ray Crystallographyantiviral immunitybioinformatics toolexperimental studyfightingpathogenpressurerational designresponsesensorsmall moleculesynergismtranscription factor
项目摘要
PROJECT SUMMARY
Molecular mechanisms of bacterial immune signaling through DNA damage
The availability of tens of thousands of bacterial genome sequences, plus new bioinformatics tools and
new understanding of bacterial genome organization, has enabled the discovery and experimental
characterization of dozens of anti-bacteriophage and anti-plasmid defense systems in bacteria. Since a typical
bacterial genome encodes 3-6 distinct defense systems, a key question is whether and how these systems can
coordinate their activities to synergistically fight an infection. In prior work on the widespread and diverse
CBASS (Cyclic oligonucleotide-Based Anti-phage Signaling System) defense systems, we identified two
transcriptional regulators – CapW and the two-protein CapH+CapP system – that boost CBASS gene
expression in response to DNA damage. Together, CapW and CapH+CapP are associated with ~10% of
CBASS systems, and are also found adjacent to a broad range of known and predicted bacterial defense
systems including Pycsar, DISARM, and BREX. These findings suggest that CapW and CapH+CapP may
mediate activation of antiviral defense in response to a universal signal of cell stress, DNA damage. Here, I will
first identify the small-molecule or nucleic acid ligand that binds and activates CapW upon DNA damage. I will
combine biochemical assays for CapW binding to both its target DNA and its ligand with x-ray crystallography
to characterize the conformational changes imposed by the ligand to control CapW-DNA binding. This work will
establish a mechanism for CapW, a widespread bacterial transcription factor. Next, I will test the idea that
CapW and CapH+CapP mediate cooperation between antiviral defense systems by sensing DNA damage.
Specifically, we hypothesize that DNA-targeting immune systems like restriction-modification and CRISPR-Cas
create DNA damage that is sensed by CapW or CapH+CapP to activate a secondary defense system (CBASS
or others) to reinforce the defensive response. I will systematically test this model by infecting cells encoding
both a restriction-modification system and a CapW- or CapH+CapP-associated CBASS system to determine if
the combination of these systems yields synergistic antiviral immunity. Additionally, I will test whether DNA
damage sensing plays a role in defense-system synergy, using structure-based mutations to either CapW or
CapP that eliminate DNA damage sensing. Together, these experiments will reveal the molecular mechanism
of CapW, and the role of DNA damage sensors in mediating synergy in bacterial defense systems. The
findings have the potential to establish a new paradigm in which DNA targeting defense systems constitute a
first line of antiviral defense, and DNA damage-activated systems constitute a second line of defense with
orthogonal mechanisms. Thus, instead of viewing bacterial defense systems in isolation, this work will
establish how they cooperate to compose a comprehensive bacterial “immune system”.
项目总结
细菌免疫信号通过DNA损伤的分子机制
数以万计的细菌基因组序列的可用性,加上新的生物信息学工具和
对细菌基因组组织的新认识,使这一发现和实验成为可能
细菌中数十个抗噬菌体和抗质粒防御系统的特征。由于典型的
细菌基因组编码3-6个不同的防御系统,一个关键的问题是这些系统是否以及如何
协调它们的活动以协同抗击感染。在之前的工作中,关于广泛和多样化的
CBASS(基于环寡核苷酸的抗噬菌体信号系统)防御系统,我们鉴定了两个
转录调控因子--CAPW和两种蛋白的CapH+Capp系统--促进CBass基因
表达对DNA损伤的反应。CAPW和CapH+CAPP合计与约10%的
CBass系统,也被发现与广泛的已知和预测的细菌防御系统相邻
系统包括Pycsar、Disarm和Brex。这些发现表明,CAPW和CapH+Capp可能
介导抗病毒防御的激活,以响应细胞应激的普遍信号,即DNA损伤。在这里,我会
首先确定在DNA损伤时结合并激活CAPW的小分子或核酸配体。这就做
结合X-射线结晶学的CAPW与靶DNA及其配体结合的生化分析
研究配体对控制CAPW-DNA结合的构象变化。这项工作将
建立一种广泛存在的细菌转录因子CAPW的作用机制。接下来,我将测试这样一种想法
CAPW和CapH+Capp通过感知DNA损伤来调节抗病毒防御系统之间的合作。
具体来说,我们假设像限制性内切酶修饰和CRISPR-CA这样的DNA靶向免疫系统
创建可由CAPW或CapH+Capp感知的DNA损伤,以激活二级防御系统(CBass
或其他),以加强防御反应。我将通过感染编码的细胞来系统地测试这个模型
限制修改系统和CAPW或CapH+CAPP相关联的CBASS系统
这些系统的结合产生了协同抗病毒免疫。另外,我会测试DNA是否
损伤感知在防御系统协同中发挥作用,使用基于结构的突变来CAPW或
消除DNA损伤感知的CAPP。总之,这些实验将揭示分子机制。
以及DNA损伤传感器在细菌防御系统中介导协同作用的作用。这个
这些发现有可能建立一种新的范式,在这种范式中,DNA靶向防御系统构成
抗病毒的第一道防线和DNA损伤激活系统构成了第二道防线
正交机构。因此,这项工作不是孤立地观察细菌防御系统,而是
确定它们如何合作组成一个全面的细菌“免疫系统”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chelsea Lee Blankenchip其他文献
Chelsea Lee Blankenchip的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Regulation of RIG-I mediated antiviral response upon influenza A virus infection
RIG-I介导的甲型流感病毒感染抗病毒反应的调节
- 批准号:
494286 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别:
Operating Grants
Activation of the DNA-PK-dependent antiviral response as a novel cancer immunotherapy
激活 DNA-PK 依赖性抗病毒反应作为一种新型癌症免疫疗法
- 批准号:
10364056 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
ADAR1-mediated antiviral response in Zika virus (ZIKV) infection
ADAR1 介导的寨卡病毒 (ZIKV) 感染抗病毒反应
- 批准号:
10621913 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
ADAR1-mediated antiviral response in Zika virus (ZIKV) infection
ADAR1 介导的寨卡病毒 (ZIKV) 感染抗病毒反应
- 批准号:
10373627 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
Activation of the DNA-PK-dependent antiviral response as a novel cancer immunotherapy
激活 DNA-PK 依赖性抗病毒反应作为一种新型癌症免疫疗法
- 批准号:
10553146 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
Interplay between AMPK and Hippo Signaling Regulates Ocular Antiviral Response to Zika virus infection
AMPK 和 Hippo 信号传导之间的相互作用调节眼部对寨卡病毒感染的抗病毒反应
- 批准号:
10322026 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别:
Mechanisms of IgE-mediated regulation of monocyte antiviral response pathways
IgE介导的单核细胞抗病毒反应途径的调节机制
- 批准号:
10640247 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别:
Mechanisms of IgE-mediated regulation of monocyte antiviral response pathways
IgE 介导的单核细胞抗病毒反应途径调节机制
- 批准号:
10438876 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别:
Antiviral response coupled with transposon derepression in Alzheimer's disease and aging
抗病毒反应与转座子去抑制在阿尔茨海默病和衰老中的作用
- 批准号:
10629440 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别:
Epigenetic Control of Mucosal IRF1/IFN-III Antiviral Response by Enhancer-like Promoter and its Coding lncRNA
增强子样启动子及其编码lncRNA对粘膜IRF1/IFN-III抗病毒反应的表观遗传控制
- 批准号:
10373575 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别:














{{item.name}}会员




