Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
基本信息
- 批准号:10678264
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Advanced Malignant NeoplasmAlgorithmsAnxietyAptitudeArchivesAreaArtificial IntelligenceAwardBenignBig DataBiometryCessation of lifeCharacteristicsClassificationClinicalClinical InformaticsClinical ManagementClinical/RadiologicDataDecision MakingDiagnosisDiagnosticDiagnostic ErrorsDiagnostic ProcedureDiseaseEarly DiagnosisEngineeringEnvironmentEpidemicEvaluationExhibitsFellowshipFutureGoalsGrowthHealth Care CostsHealthcare SystemsHistologicHistologyHistopathologyImageImage AnalysisIncidenceIndolentInstitutionInterventionJointsLaboratoriesLanguageLearningLungLung AdenocarcinomaLung noduleMachine LearningMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMeasurementMeasuresMedicalMedical HistoryMedical ImagingMentorsMetastatic Neoplasm to the LungMethodsModalityModelingModernizationMorbidity - disease rateNoduleOncologyOutcomePathway interactionsPatient-Focused OutcomesPatientsPatternPerformancePhenotypePhysiciansPositioning AttributePredictive ValueProbabilityProspective cohortPublic HealthRadiationRadiologic FindingRadiology SpecialtyRecording of previous eventsRecordsResearchResourcesRetrospective cohortRiskRisk ReductionScientistSmokingSmoking HistoryStandardizationSubgroupTechniquesTimeTrainingUniversitiesVisionWorkX-Ray Computed Tomographyanxiety reductionartificial intelligence methodbiomedical informaticscancer imagingcancer subtypescareerchest computed tomographyclinical phenotypeclinical predictive modelclinically actionablecohortcost efficientdeep learningdesignelectronic health datahealth recordhigh dimensionalityhigh riskimprovedinnovationlearning strategylenslow dose computed tomographylung cancer screeningmortalitymultimodal datamultimodalitynoninvasive diagnosisnovelnovel strategiespersonalized approachprecision oncologypredictive modelingprospectiveradiomicsrisk stratificationscreeningsegregationserial imagingstandard of caresuccesssymposiumtumor
项目摘要
PROJECT SUMMARY
Indeterminate pulmonary nodules (IPNs) are highly prevalent radiologic findings that represent a substantial
burden to patients and the national health care system because of the diagnostic challenge they present.
There is a dire need to accurately stratify IPNs into low and high malignancy risk subgroups which are
associated with clinical management pathways that are standardized and well validated. Clinical prediction
models have the potential to do so in a scalable, cost-efficient, automated, and noninvasive manner, but
advances in predictive accuracy must be made before they can make a substantial impact in medical practice.
An unexplored direction in this area is integrating repeated measures of computed tomography (CT) studies
and clinically-collected information within the same prediction model. This joint learning strategy has advantage
of potentially modeling how dynamic radiologic changes like nodule growth rate vary with the trajectory of
clinical variables such as smoking patterns and laboratory abnormalities. This perspective motivates the
hypothesis that integrating information from longitudinal imaging and longitudinal clinical records will
improve personalized IPN risk stratification and lung cancer subclassification From a clinician’s lens,
this finding would not be surprising given the many time-varying modalities that are involved in diagnosis and
decision making. This project leverages artificial intelligence (AI) and radiomic methods to analyze three
retrospective cohorts with the possible addition of a large prospective cohort. The proposed work in Aim 1 will
extend upon existing deep learning techniques to train a joint learning model on longitudinal images and
clinical records to estimate the malignancy probability across time in patients with IPNs in a combined cohort
exceeding 2000 subjects. This novel strategy will be evaluated against single-modality models and convention
models that are used in practice. The evaluation will compare the models’ performance in stratifying IPNs into
the low and high risk subgroups as a measure of clinical utility. Aim 2 asks if longitudinal change in radiomic
features can distinguish between indolent and aggressive lung adenocarcinoma, other lung cancer subtypes,
and pulmonary metastases. The proposed study will be the first to comprehensively characterize longitudinal
radiomics across lung cancer subtypes and has the potential to identify novel longitudinal radiomic features
that will aid early IPN evaluation and noninvasive lung cancer subclassification in patients with repeated
imaging. In summary, the proposed research asks if clever integration of longitudinal information across
different modalities can be leveraged to advance IPN risk stratification and lung cancer subclassification. This
fellowship will be conducted at Vanderbilt University in a highly collaborative training environment with mentors
in medical imaging AI, pulmonary oncology, biomedical informatics, radiology, and biostatistics. The proposed
research and training plans are synergistically designed to ultimately prepare the candidate for a physician
scientist career at the intersection of engineering innovation and precision oncology.
项目摘要
不确定性肺结节(IPN)是非常普遍的放射学发现,代表了实质性的肺结节。
这对患者和国家卫生保健系统造成了负担,因为它们提出了诊断挑战。
迫切需要将IPN准确地分层为低和高恶性风险亚组,
与标准化和经过充分验证的临床管理路径相关。临床预测
模型有潜力以可扩展、成本效益高、自动化和非侵入性的方式做到这一点,但
必须在预测准确性方面取得进展,才能在医疗实践中产生实质性影响。
一个未探索的方向在这一领域是整合重复测量的计算机断层扫描(CT)研究
以及在同一预测模型内的临床收集的信息。这种联合学习策略具有优势
潜在的模拟动态放射学变化,如结节生长速率,
临床变量,如吸烟模式和实验室异常。这一观点激发了
假设整合来自纵向成像和纵向临床记录的信息将
改进个性化IPN危险分层和肺癌亚分类从临床医生的透镜来看,
考虑到诊断中涉及许多随时间变化的模式,
决策。该项目利用人工智能(AI)和放射组学方法分析三个
回顾性队列,可能增加大型前瞻性队列。目标1中的拟议工作将
扩展现有的深度学习技术,在纵向图像上训练联合学习模型,
临床记录,以估计联合队列中IPN患者随时间推移的恶性概率
超过2000个主题。这种新的战略将评估对单模态模型和公约
在实践中使用的模型。评估将比较模型在将IPN分层为
低风险和高风险亚组作为临床效用的量度。目标2询问放射组学中的纵向变化是否
特征可以区分惰性和侵袭性肺腺癌,其他肺癌亚型,
和肺转移。这项拟议的研究将是第一个全面描述纵向
肺癌亚型的放射组学,并有可能确定新的纵向放射组学特征
这将有助于对反复发作的患者进行早期IPN评估和非侵入性肺癌亚分类,
显像总而言之,拟议的研究询问,如果巧妙地整合纵向信息,
可以利用不同的模式来推进IPN风险分层和肺癌亚分类。这
奖学金将在范德比尔特大学与导师在高度合作的培训环境中进行
在医学成像AI,肺肿瘤学,生物医学信息学,放射学和生物统计学。拟议
研究和培训计划是协同设计的,以最终准备候选人的医生
科学家的职业生涯在工程创新和精密肿瘤学的交叉点。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Curating retrospective multimodal and longitudinal data for community cohorts at risk for lung cancer.
为有肺癌风险的社区群体整理回顾性多模式和纵向数据。
- DOI:10.3233/cbm-230340
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Li,ThomasZ;Xu,Kaiwen;Chada,NeilC;Chen,Heidi;Knight,Michael;Antic,Sanja;Sandler,KimL;Maldonado,Fabien;Landman,BennettA;Lasko,ThomasA
- 通讯作者:Lasko,ThomasA
Quantifying emphysema in lung screening computed tomography with robust automated lobe segmentation
通过强大的自动肺叶分割来量化肺部筛查计算机断层扫描中的肺气肿
- DOI:10.1117/1.jmi.10.4.044002
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Li, Thomas Z.;Hin Lee, Ho;Xu, Kaiwen;Gao, Riqiang;Dawant, Benoit M.;Maldonado, Fabien;Sandler, Kim L.;Landman, Bennett A.
- 通讯作者:Landman, Bennett A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Zhihe Li其他文献
Thomas Zhihe Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant