Neural and behavioral mechanisms of song learning in zebra finches
斑胸草雀鸣叫学习的神经和行为机制
基本信息
- 批准号:10678601
- 负责人:
- 金额:$ 4.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcousticsAdolescentAdultAthleticBasal GangliaBehaviorBehavioralBehavioral MechanismsBrainCalciumCollaborationsComplexComputing MethodologiesDataDevelopmentDimensionsDopamineElementsEntropyExperimental DesignsExploratory BehaviorFacultyFiberFinchesFrequenciesGenerationsGoalsHandImageIndividualInstructionLearningLearning DisordersLearning SkillLengthMachine LearningMemoryMentorsMethodsMidbrain structureModelingMusicNeurosciencesPerformancePhasePhotometryPhotonsPlayPopulationPositioning AttributeProcessProductionPsychological reinforcementPupilResearchResearch InstituteResearch PersonnelRewardsRoleSignal TransductionSongbirdsSourceStochastic ProcessesStructureSupervisionTalentsTestingTimeVariantVertebratesWorkautoencodercomputer frameworkcomputerized toolsexperienceexperimental studyfortificationhigh dimensionalityinsightlearned behaviormemberneuralneuroimagingneuromechanismnoveloptical imagingrate of changeself-directed learningsensorskillstooltutoringverbalvocal learningvocalizationzebra finch
项目摘要
Project Summary
Many of our most impressive skills, such as those supporting extreme athletic talent or precise musical
expression, are learned by imitating the skilled performance of a tutor. To successfully imitate a tutor, a pupil
must generate a range of behaviors, evaluate them relative to an example of the tutor, and then reinforce those
that are similar to that example. The generated behaviors are often highly elaborate and produced without any
source of comparison other than the pupil's internal template. As such, imitative learning depends intimately on
the pupil's ability to evaluate and reinforce its own performance in the absence of any extrinsic reward or
instruction. The brain mechanisms that support imitative learning remain poorly understood, although it is well
known that the basal ganglia (BG) play a central role in classical forms of reinforcement learning. How the BG
evaluates and reinforces behavioral variants over the course of imitative learning remains uncertain. In my
research I will characterize the relationship between neural activity in the BG, behavioral exploration,
and reinforcement during imitative learning. My Specific Aims are: 1) To model the imitative learning
process by which songbirds explore subsyllabic structure within song. 2) To jointly model vocal variability and
BG circuit activity during song learning. Aim 1 will advance our understanding of the behavioral mechanisms of
vocal learning and develop computational frameworks for understanding complex learning processes, while
Aim 2 will relate neural variability in the BG to vocal variability during these learning processes. The analyses
and models I create in this proposal will both provide insight into the song learning process in zebra finches
and create a more general framework for studying complex skill learning. I will conduct this research under the
supervision of Drs. John Pearson and Richard Mooney, a team of accomplished, interdisciplinary mentors with
complementary skillsets. Their collaboration has already proven to be fruitful. I will work closely with members
of the Mooney lab to hone our scientific questions, refine our experimental design, and develop our analyses.
In doing so I will build a balanced set of theoretical and experimental skills. I bring a deep passion for
understanding complex behavior on both behavioral and neural scales, in addition to expertise in behavioral
and computational methods. The experience I gain from this proposal will make me a competitive and
independent investigator, accelerating me towards my long-term goal of obtaining a faculty position at a
research institute.
项目摘要
我们的许多最令人印象深刻的技能,例如那些支持极端运动天赋或精确音乐的技能
表达,是通过模仿导师熟练的表演来学习的。成功地模仿导师,学生
必须产生一系列的行为,评估他们相对于导师的例子,然后加强这些
类似于那个例子。生成的行为通常是高度精心制作的,并且没有任何
除了学生的内部模板之外的比较源。因此,模仿学习密切依赖于
学生在没有任何外在奖励的情况下评估和加强自己表现的能力,
指导。支持模仿学习的大脑机制仍然知之甚少,尽管它是很好的。
众所周知,基底神经节(BG)在经典形式的强化学习中发挥着核心作用。BG如何
在模仿学习过程中评估和强化行为变体仍然是不确定的。在我
研究我将描述BG中神经活动,行为探索,
在模仿学习中的强化。我的具体目标是:1)模仿学习模型
鸣禽探索歌曲中的次音节结构的过程。2)共同模拟声音的变化,
歌曲学习过程中的BG回路活动。目的1将促进我们对行为机制的理解,
声乐学习和发展计算框架,以了解复杂的学习过程,而
目标2将在这些学习过程中BG的神经变异性与发声变异性联系起来。的分析
我在这个提案中创建的模型都将提供对斑胸草雀歌曲学习过程的深入了解,
并为研究复杂的技能学习创建一个更通用的框架。我将根据
约翰·皮尔逊博士和理查德·穆尼博士的监督,一个有成就的跨学科导师团队,
互补的技能。他们的合作已经证明是富有成果的。我将与各位成员密切合作,
Mooney实验室来磨练我们的科学问题,完善我们的实验设计,并发展我们的分析。
在这样做的过程中,我将建立一套平衡的理论和实验技能。我带着深深的热情
理解行为和神经尺度上的复杂行为,除了行为方面的专业知识,
和计算方法。我从这个建议中获得的经验将使我成为一个有竞争力的,
独立调查员,加速我对我的长期目标,获得一个教师职位在一个
研究院
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miles Martinez其他文献
Miles Martinez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
Standard Grant