Defining synthetic lethal relationships with loss of the homologous recombination factor Rad52
定义同源重组因子 Rad52 丢失的合成致死关系
基本信息
- 批准号:10678580
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnaphaseAwardBRCA deficientBRCA2 geneBiological AssayCRISPR/Cas technologyCancer PatientCell Cycle RegulationCell NucleusCellsChromosome Fragile SitesCisplatinClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplexCoupledDNADNA DamageDNA RepairDNA Repair DisorderDNA Repair PathwayDNA biosynthesisDataDependenceDot ImmunoblottingEnsureEventExposure toFANCD2 proteinFellowshipGamma-H2AXGenesGeneticGenetic TranscriptionGenomeGenome StabilityGenomic InstabilityGenotoxic StressGoalsHumanHybridsInterphaseIonizing radiationKnock-outKnowledgeLabelMaintenanceMalignant NeoplasmsMeasuresMediatingMissionMitosisMitoticPathway interactionsPatient-Focused OutcomesPhosphorylationPlayProcessProteinsRAD52 geneRNARNA metabolismRadiation exposureResolutionRoleSourceStressStructureSynthetic GenesTestingTherapeuticUltrafineUnited States National Institutes of HealthWorkcancer therapyeffective therapyfitnessgenome-widegenotoxicityhomologous recombinationhydroxyureaimprovedinhibitorinsightinterestknock-downmalignant breast neoplasmnovelnovel therapeutic interventionparalogous genepreventrecruitreplication stressscreeningsmall molecule inhibitorsynthetic lethal interactiontargeted treatmenttelomeretumor
项目摘要
SUMMARY. The long-term goal of this project is to define factors and pathways that are synthetic lethal with
loss of the human Rad52 protein. Rad52 plays essential roles in several homology-driven DNA repair pathways,
including single strand annealing, transcription-coupled homologous recombination, and mitotic DNA synthesis
(MiDAS). Although Rad52 is not essential, Rad52 loss with disruption of either the breast cancer 1 (BRCA1) or
breast cancer 2 (BRCA2) genes is synthetic lethal. Thus, Rad52 is an intriguing potential target for treatment of
BRCA-deficient cancers. However, the full breadth of pathways and factors that create a state of Rad52-
dependence when compromised are not understood, and the long-term goal of this proposal is to address this
gap in knowledge. In preliminary data, I present my CRISPR knock-out screen in Rad52 Knock-out (Rad52KO)
cells vs. wild-type (Rad52WT) to identify factors that are synthetic lethal with Rad52 (defined here as loss of
fitness). I then present secondary screening that identified three top hits causing increased persistent DNA
damage and loss of viability in the Rad52KO vs Rad52WT: ERCC6L/PICH, DHX9 and GLE1. From these data, my
overall hypothesis is that a key regulator of Mitosis (PICH) and RNA metabolism factors (DHX9 and GLE1) are
synthetic lethal with Rad52 due to dependence on Rad52 to resolve replication stress from diverse sources. Aim
1: To define the synthetic lethal relationship between Rad52 and PICH. Rad52 protects genome stability through
roles in MiDAS and suppression of replication stress. PICH mediates resolution of anaphase ultrafine bridges
(UFBs), a separate pathway to mitigate replication stress. Aim 1a: I posit that these two pathways are partially
redundant in preventing accumulation of genotoxic damage tied to replication stress. Namely, I posit that PICH-
UFBs will be elevated in Rad52KO cells, and conversely that depletion of PICH will cause elevated Rad52
recruitment to replication stress in mitotic cells, as well as MiDAS. Aim 1b: I also posit that replication stress that
persists until mitosis is the source of persistent DNA damage in cells lacking Rad52 and PICH. I will test this by
assaying phosphorylated RPA2 (pRPA), γH2AX, and FANCD2 localization in mitotic cells. Aim 2: To define the
synthetic lethal relationship between Rad52 and RNA metabolism factors DHX9 and GLE1. DHX9 and GLE1
have been shown to suppress RNA-DNA hybrids (R-loops). Thus, I hypothesize that R-loop-related replication
stress underlies synthetic lethality between these genes and Rad52. I will assay whether depletion of these
genes increases R-loops, causes elevated levels of mitotic replication stress (i.e. Rad52 accumulation into foci,
MiDAS, PICH-UFBs, and the measures of replication stress described in Aim 1b). In summary, these studies will
provide insight into how loss of these genes create a dependence on Rad52-mediated mitigation of replication
stress in mitosis (i.e., MiDAS), enhance our understanding of genome maintenance mechanisms, with a long-
term goal of identifing tumor-specific vulnerabilities for Rad52 inhibitors.
摘要该项目的长期目标是确定合成致死的因子和途径,
人Rad 52蛋白的丢失。Rad 52在几种同源驱动的DNA修复途径中起重要作用,
包括单链退火、转录偶联同源重组和有丝分裂DNA合成
(MiDAS)。尽管Rad 52不是必需的,但Rad 52的丢失伴随乳腺癌1(BRCA 1)或乳腺癌细胞的破坏。
乳腺癌2(BRCA 2)基因是合成致死的。因此,Rad 52是一个有趣的潜在治疗靶点,
BRCA缺陷型癌症然而,创造Rad 52状态的全部途径和因素-
当妥协时的依赖性不被理解,本提案的长期目标是解决这一问题
知识的差距。在初步数据中,我在Rad 52 Knock-out(Rad 52 KO)中展示了我的CRISPR敲除筛选
细胞与野生型(Rad 52 WT)比较,以鉴定与Rad 52合成致死的因子(在此定义为
健身)。然后,我提出了二次筛选,确定了三个最大的命中造成增加持久的DNA
Rad 52 KO与Rad 52 WT:ERCC 6L/PICH、DHX 9和GLE 1中的损伤和活力丧失。根据这些数据,我
总体假设是有丝分裂的关键调节因子(PICH)和RNA代谢因子(DHX 9和GLE 1)是
由于依赖于Rad 52来解决来自不同来源的复制应激,因此Rad 52具有合成致死性。目的
1.确定Rad 52与PICH的综合致死关系。Rad 52通过以下途径保护基因组稳定性
在MiDAS和抑制复制应激中的作用。PICH介导后期超细桥的拆分
(UFB),一个单独的途径,以减轻复制压力。目标1a:我认为这两条途径部分是
在防止与复制应激相关的遗传毒性损伤积累方面是多余的。所以,我认为,PICH-
在Rad 52 KO细胞中UFB将升高,相反,PICH的消耗将导致Rad 52升高
募集到有丝分裂细胞中的复制应激,以及MiDAS。目标1b:我还重申,复制强调,
持续存在,直到有丝分裂是缺乏Rad 52和PICH的细胞中持续DNA损伤的来源。我将通过
测定磷酸化RPA 2(pRPA)、γ H2 AX和FANCD 2在有丝分裂细胞中的定位。目标2:定义
Rad 52与RNA代谢因子DHX 9和GLE 1的合成致死关系DHX 9和GLE 1
已显示抑制RNA-DNA杂合体(R环)。因此,我假设R环相关的复制
胁迫是这些基因和Rad 52之间的合成致死性的基础。我将分析这些物质的消耗
基因增加R环,导致有丝分裂复制应激水平升高(即Rad 52聚集到病灶中,
MiDAS、PICH-UFB和目的1b)中描述的复制应激指标。总之,这些研究将
深入了解这些基因的缺失如何依赖于Rad 52介导的复制缓解
有丝分裂中的应力(即,MiDAS),增强我们对基因组维持机制的理解,
确定Rad 52抑制剂的肿瘤特异性弱点的长期目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beth Anne Osia其他文献
Beth Anne Osia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
RIF1蛋白在处理超细后期桥(ultrafine anaphase bridge)和保障基因组稳定的作用
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
The Anaphase Promoting Complex/Cyclosome and double-stranded DNA damage in S. cerevisiae
酿酒酵母中的后期促进复合物/环体和双链 DNA 损伤
- 批准号:
574890-2022 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
University Undergraduate Student Research Awards
Identification of protein phosphatases required for anaphase onset.
鉴定后期开始所需的蛋白磷酸酶。
- 批准号:
575128-2022 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
University Undergraduate Student Research Awards
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10797668 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Discovery Grants Program - Individual
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10345098 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
- 批准号:
10561625 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
- 批准号:
RGPIN-2017-05478 - 财政年份:2021
- 资助金额:
$ 6.95万 - 项目类别:
Discovery Grants Program - Individual
Characterization of mitochondrial organization, epigenomic regulation, and the Anaphase Promoting Complex in Progeria-driven premature senescence
早衰症驱动的过早衰老中线粒体组织、表观基因组调控和后期促进复合物的表征
- 批准号:
466918 - 财政年份:2021
- 资助金额:
$ 6.95万 - 项目类别:
Studentship Programs
The Role of the Anaphase Promoting Complex in Breast Cancer Progression
后期促进复合物在乳腺癌进展中的作用
- 批准号:
555539-2020 - 财政年份:2020
- 资助金额:
$ 6.95万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Unravelling the role of topoisomerase II beta binding protein 1 (TOPBP1) in the resolution of ultra-fine anaphase bridges.
揭示拓扑异构酶 II β 结合蛋白 1 (TOPBP1) 在解析超细后期桥中的作用。
- 批准号:
BB/T009608/1 - 财政年份:2020
- 资助金额:
$ 6.95万 - 项目类别:
Fellowship