Deep probabilistic predictive models for stroke and coronary heart disease

中风和冠心病的深度概率预测模型

基本信息

  • 批准号:
    10678650
  • 负责人:
  • 金额:
    $ 64.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary Cardiovascular disease negatively affects millions of people worldwide. Globally, it accounts for approximately thirty percent of all deaths. Furthermore, a significant fraction of deaths caused by cardiovascular disease occur in a non-geriatric population; fifteen percent of all worldwide deaths are attributed to cardiovascular disease for people under the age of seventy. Treatment to prevent cardiovascular events should be based on highly individualized risk prediction. High risk patients should get more aggressive treatments because the risk of disease outweighs the burden of treatment, while low risk patients should be managed more conservatively. For example, anti-thrombotic therapy for coronary heart disease may increase bleeding risk and may not be appropriate for low-risk patients. Two primary kinds of cardiovascular disease are stroke and coronary heart disease, and there have been a number of developments in risk scores for both ailments. However, these risk scores only use a small fraction of the available measurements about a patient and treat risk as a collection of independent factors rather than considering how their interactions amplify or ameliorate risk. Moreover, a majority of the popular coronary heart disease and stroke risk scores are designed to be manually computed by a busy physician at the point of care, which further limits their scope and fidelity. Next generation risk scores for stroke and cardiovascular disease should take into account all of the available information in the electronic health record without the constraints of the parametric assumptions of traditional risk modeling. More accurate risk assessment of coronary heart disease and stroke will lead to better care and reduce the cardiovascular disease burden. Our vision is to capitalize on large collections of electronic health records along with recent advances in deep learning to build risk scores that use more available health information while making minimal mathematical assumptions about the nature of clinical risk. Our proposal propels the field from human computable independent risks calculations necessitated by previous limitations of technology to calculations that make use of deep learning to learn highly nonlinear risks and risk factor interactions. We additionally demonstrate how deep learning can be used to deal with the ever-present issue of missing values in medicine. Our proposal also targets an area under- explored by previous work on risk scores: fairness. Treatment quality is affected by the quality of risk estimation. This means populations where estimated risk is less accurate may receive worse care. Risk scores developed with simple models may only capture risk accurately for the majority population as simple models are not flexible enough to cover multiple populations. We seek to identify potential risk calculation differences with respect to race and ethnicity. We will construct and evaluate deep learning methods for coronary heart disease and stroke risk assessment from electronic health records. We will develop techniques to incorporate clinical text, handle missing data, and evaluate fairness of deep learning for cardiovascular risk scores. Finally, we will make our work available as open source code written in deep learning frameworks, at clinical conferences, and publications.
项目总结

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Invariant Representations with Missing Data.
学习缺失数据的不变表示。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goldstein,Mark;Puli,Aahlad;Ranganath,Rajesh;Jacobsen,Jörn-Henrik;Chau,Olina;Saporta,Adriel;Miller,AndrewC
  • 通讯作者:
    Miller,AndrewC
Deep learning models for electrocardiograms are susceptible to adversarial attack.
  • DOI:
    10.1038/s41591-020-0791-x
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    82.9
  • 作者:
    Han X;Hu Y;Foschini L;Chinitz L;Jankelson L;Ranganath R
  • 通讯作者:
    Ranganath R
Causal Estimation with Functional Confounders.
具有功能混杂因素的因果估计。
Survival Mixture Density Networks
  • DOI:
    10.48550/arxiv.2208.10759
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xintian Han;Mark Goldstein;R. Ranganath
  • 通讯作者:
    Xintian Han;Mark Goldstein;R. Ranganath
General Control Functions for Causal Effect Estimation from Instrumental Variables.
根据工具变量估计因果效应的一般控制函数。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rajesh Ranganath其他文献

Rajesh Ranganath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rajesh Ranganath', 18)}}的其他基金

Deep probabilistic predictive models for stroke and coronary heart disease
中风和冠心病的深度概率预测模型
  • 批准号:
    10439509
  • 财政年份:
    2019
  • 资助金额:
    $ 64.05万
  • 项目类别:
Deep probabilistic predictive models for stroke and coronary heart disease
中风和冠心病的深度概率预测模型
  • 批准号:
    10213130
  • 财政年份:
    2019
  • 资助金额:
    $ 64.05万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 64.05万
  • 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
  • 批准号:
    2601817
  • 财政年份:
    2021
  • 资助金额:
    $ 64.05万
  • 项目类别:
    Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
  • 批准号:
    2029039
  • 财政年份:
    2020
  • 资助金额:
    $ 64.05万
  • 项目类别:
    Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
  • 批准号:
    9888417
  • 财政年份:
    2019
  • 资助金额:
    $ 64.05万
  • 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
  • 批准号:
    17K11318
  • 财政年份:
    2017
  • 资助金额:
    $ 64.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 64.05万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 64.05万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 64.05万
  • 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
  • 批准号:
    BB/M50306X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 64.05万
  • 项目类别:
    Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
  • 批准号:
    288272
  • 财政年份:
    2013
  • 资助金额:
    $ 64.05万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了