Leveraging biodiversity and utilizing genetic engineering to expand the structure and function of silk fibroin biopolymers for biomedical applications
利用生物多样性和基因工程扩展丝素蛋白生物聚合物的结构和功能,用于生物医学应用
基本信息
- 批准号:10680505
- 负责人:
- 金额:$ 36.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgricultureAmino Acid SequenceAwardBacteriaBindingBiochemicalBiodiversityBiologicalBiophysicsBiopolymersBombyxBombyx moriChemicalsClustered Regularly Interspaced Short Palindromic RepeatsCollectionEmbryoFiberFibroinsFutureGenetic EngineeringGoalsGrowth FactorHealthcareHumanHumidityImmune responseImplantIn VitroInjectionsInsectaInterruptionInvestigationLengthLepidopteraLife Cycle StagesMammalian CellMedical DeviceMedicineModificationMothsMuscle rehabilitationNatural regenerationOutcomePeptidesPharmacologic SubstancePhasePhenotypePolymersPopulationProcessProductionProteinsPublic HealthPupaResearchResearch PersonnelSilkSiteSolventsStimulusStructureTemperatureTissue EngineeringTractionTranscriptional RegulationTranslationsUnited States Food and Drug AdministrationWorkaqueousdesignimplantationimprovedin vivomanufacturemechanotransductionpathogenprotein aminoacid sequencescale upsuccesssurgery materialtissue reconstructiontool
项目摘要
Project Summary
Materials for applications in healthcare and medicine usually come from two main groups (a) synthetic polymers
specifically designed to achieve a certain goal or (b) naturally derived biopolymers that are leveraged in their
native or slightly modified state for a specific goal. The advantage of being a synthetic chemist is that technically,
if you can synthesize it, the possibilities are infinite, but the downfall is that often solvents or portions of the
polymer cause cytocompability issues or concerns when it comes to translation and implantation in a human.
Alternatively, unmodified natural biopolymers, or proteins, have an easier path toward Food and Drug
Administration's approval, but lack the customizability afforded in synthesis or chemical modification. Genetic
engineering via production of small peptides in bacteria has improved the availability of customizable short
peptides, but proteins on the order of hundreds of kilodaltons cannot be produced this way. This is the case for
the silk fibroin biopolymers isolated from caterpillars in the Lepidoptera order, where the heavy chain of silk
fibroin is known to be over 300 kilodaltons in length. Genetic engineering, using tools such as CRISPR or
PiggyBac, provides an avenue for theoretically modifying the sequence of silk proteins, which has been
attempted with limited success in the domesticated silkworm, Bombyx mori. However, silk is collected from the
cocoon of the B. mori pupae, meaning that the life cycle of this silkworm is interrupted, making it difficult to
maintain these modified populations or assess phenotypes in a high-throughput manner. To address this, silk
fibroin will be isolated from an entirely different silk-producing species: Plodia interpunctella, or the Indianmeal
moth. Under specific conditions, this agricultural pest produces sheets of silk prior to entering the cocooning
phase. These easily collectable sheets of silk fibers can then be cleaned, degummed, and regenerated to an
aqueous biopolymer solution. Moreover, unlike B. mori, P. interpunctella silk collection does not interrupt the life
cycle of the silkworm/moth and these silkworms are easier to stably genetically modify though embryo injections
compared to B. mori. In this Maximizing Investigators' Research Award, genetic engineering will be leveraged to
modify the silk fibroin protein sequence at the organismal level, adding in new peptide sequences such as
mammalian cell binding motifs or sites for human growth factor sequestration. Scale-up of the process will be
achieved via transcriptional regulation of silk fibroin as a function of external stimuli such as humidity or
pathogens. Together, these two strategies for enhancing the bio-functionality of the silk fibroin protein and the
scale-up required for advanced manufacturing of medical devices or materials will be explored. The outcomes
of this work include full biophysical, biochemical, and in vivo characterization of these materials through analysis
of systemic and local immune responses in vivo, complete characterization of the new biopolymer structures,
and investigation of mechanotransduction in these materials in vitro. Future work aims to leverage this new class
of biopolymers for specific applications in pharmaceutical delivery, tissue engineering, and muscle rehabilitation.
项目摘要
用于医疗保健和医学应用的材料通常来自两大类:(a)合成聚合物
或(B)天然衍生的生物聚合物,其在其用途中被利用,
原始状态或为特定目标而稍微修改的状态。作为一名合成化学家的优势在于,
如果你能合成它,可能性是无限的,但失败的是,往往溶剂或部分的
当涉及到在人体内的翻译和植入时,聚合物引起细胞相容性问题或担忧。
另外,未经修饰的天然生物聚合物或蛋白质更容易进入食品和药物领域。
管理部门的批准,但缺乏合成或化学修饰提供的定制性。遗传
通过在细菌中产生小肽的工程化提高了可定制的短肽的可用性,
肽,但数百千道尔顿量级的蛋白质不能以这种方式产生。就是这种情况
从鳞翅目毛虫中分离的丝素蛋白生物聚合物,其中丝的重链
已知丝心蛋白的长度超过300千道尔顿。基因工程,使用CRISPR或
PiggyBac为理论上修饰丝蛋白序列提供了一种途径,该途径已被
在家蚕中尝试了有限的成功。然而,丝绸是从
B的茧这意味着这种蚕的生命周期被打断,
维持这些修饰的群体或以高通量方式评估表型。为了解决这个问题,丝绸
丝心蛋白将从一种完全不同的产丝物种中分离出来:Plodia interpunctella或Indianmeal
蛾在特定的条件下,这种农业害虫在进入茧层之前会产生一层丝
相位这些容易收集的丝纤维片然后可以被清洁、脱胶和再生为
生物聚合物水溶液。而且,不像B。桑、间斑家蚕丝采集不中断生活
蚕/蛾的周期,这些蚕更容易通过胚胎注射进行稳定的遗传修饰
与B相比。桑。在这个最大限度地提高研究人员的研究奖,基因工程将被利用,
在生物体水平上修饰丝素蛋白质序列,加入新的肽序列,
哺乳动物细胞结合基序或用于人生长因子螯合的位点。该进程的规模扩大将是
通过丝纤蛋白的转录调节作为外部刺激如湿度或
病原体总之,这两种用于增强丝素蛋白的生物功能性的策略和用于增强丝素蛋白的生物功能性的策略是有效的。
将探讨医疗设备或材料的先进制造所需的规模扩大。成果
这项工作包括通过分析这些材料的完整生物物理、生物化学和体内特性
体内全身和局部免疫反应,新生物聚合物结构的完整表征,
并在体外研究了这些材料的力学传导。未来的工作旨在利用这个新类
用于药物输送、组织工程和肌肉康复的特定应用的生物聚合物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Whitney L Stoppel其他文献
Whitney L Stoppel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Whitney L Stoppel', 18)}}的其他基金
AWD12927 Admin Supplement to support undergraduate summer research experiences
AWD12927 支持本科生暑期研究经验的管理补充
- 批准号:
10809114 - 财政年份:2022
- 资助金额:
$ 36.16万 - 项目类别:
相似海外基金
REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
- 批准号:
2349765 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Standard Grant
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
- 批准号:
2345854 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Standard Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Cooperative Agreement
COUSIN: Crop Wild Relatives utilisation and conservation for sustainable agriculture
表弟:作物野生近缘种的利用和保护以实现可持续农业
- 批准号:
10090949 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
EU-Funded
NSF Engines: North Dakota Advanced Agriculture Technology Engine
NSF 发动机:北达科他州先进农业技术发动机
- 批准号:
2315315 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Cooperative Agreement
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel Biofertiliser for Sustainable Agriculture: Tackling Phosphorus Crisis
用于可持续农业的新型生物肥料:解决磷危机
- 批准号:
IM240100158 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Mid-Career Industry Fellowships
Rural Development and Community Resiliency Through Agriculture Heritage Tourism
通过农业遗产旅游促进农村发展和社区复原力
- 批准号:
23K21819 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
- 批准号:
10087410 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Collaborative R&D
Advancing Controlled Environment Agriculture (CEA) with Dynamic LED Lighting Systems and Artificial Intelligence
利用动态 LED 照明系统和人工智能推进受控环境农业 (CEA)
- 批准号:
BB/Z514330/1 - 财政年份:2024
- 资助金额:
$ 36.16万 - 项目类别:
Research Grant














{{item.name}}会员




