Prediction of Heart Failure Onset using Multimodal Data Analysis, Deep Learning and Commercial Wearables
使用多模态数据分析、深度学习和商业可穿戴设备预测心力衰竭发作
基本信息
- 批准号:10681229
- 负责人:
- 金额:$ 16.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerAffectAgeAmericanArrhythmiaAutonomic nervous systemAwardBehavior TherapyCardiacCardiovascular PhysiologyCardiovascular systemCause of DeathClinicalComputersComputing MethodologiesDataData AnalysesDetectionDevelopmentDiagnosisDiagnosticEarly DiagnosisEarly identificationEarly treatmentEducational workshopElectrocardiogramElectronic Health RecordEnsureExcisionExposure toFunctional disorderFutureGrantHealth Care CostsHealthcare SystemsHeart failureHemorrhagic ShockHome environmentHypotensionIncidenceIndividualIntensive Care UnitsInterventionK-Series Research Career ProgramsLeadMachine LearningMeasuresMedicalMedical HistoryMedicineMentorshipMethodsMichiganModalityModelingMonitorMorphologic artifactsMorphologyMotionNoiseOnset of illnessOutcomeOutcome StudyPatient-Focused OutcomesPatientsPhotoplethysmographyPhysical activityPhysiologyPilot ProjectsPopulationPriceProceduresProspective cohortResearchResearch PersonnelRestRetrospective cohortRiskSamplingScientistSeveritiesSignal TransductionSymptomsTechniquesTestingTherapeutic InterventionTrainingTranslational ResearchTreatment outcomeUnited StatesUnited States National Institutes of HealthUniversitiesWritingactigraphyanalytical toolautoencodercareercareer developmentclinical careclinical decision supportcostdeep learningexperienceheart rate variabilityhemodynamicshigh riskimprovedimproved outcomeindexinginformation gatheringlearning strategymeetingsmortalitymultimodal datamultimodalitymultiple data typesnovelpatient populationpreventprospectiveresponseresponsible research conductsignal processingsmart watchstring theorysupport toolstoolusabilitywearable device
项目摘要
Prediction of Heart Failure Onset using Multimodal Data Analysis, Deep
Learning and Commercial Wearables
Project Summary/Abstract
Research: Heart failure is one of the leading causes of mortality and drivers of healthcare costs in the United
States. By 2030, the number of heart failure patients is projected to reach 8 million. If we could predict who will
develop heart failure, this would create an opportunity to improve patient experiences and outcomes by
initiating earlier behavioral and therapeutic interventions. Electronic health records (EHR) contain information
that can be used to predict heart failure before its onset. However, the existing models lead to a large number
of false positive predictions, limiting their clinical utility. The PI proposes to augment the EHR data with
electrocardiogram (ECG) and heart rate variability (HRV) features to improve the accuracy of predicting the
onset of heart failure 12 months in advance. The three modalities of data (EHR, ECG and HRV) will be
analyzed using deep learning methods, including novel techniques proposed by the PI. The models will be
developed and validated retrospectively using patient data available at Michigan Medicine. The second aim of
the proposal is to increase the impact of this research by replacing the clinically measured ECG and HRV with
those obtained by consumer wearables such as smart watches. A prospective cohort of patients will wear a
wearable device for seven days, which will allow the PI to determine whether the collected information
(intermittent ECG, continuous HRV derived from photoplethysmography, and actigraphy), combined with EHR,
can provide clinicians with a more effective tool to identify which patients are at risk of heart failure. While this
approach will benefit a larger population of patients, it will still be limited to those with past medical history. To
further expand the impact of this research to those who wear consumer wearables but have no previous
medical history, a limited model that depends only on the information gathered by the wearable device will be
evaluated. Thus, the outcomes of this study will include multiple models targeting various populations, such as
those with and without prior medical history. Candidate / Career Development: Dr. Sardar Ansari is a computer
scientist and statistician with expertise in biomedical signal processing, machine learning, and medical
wearable devices. His past research experience includes analysis of ECG signal to improve detection of
cardiac arrhythmias and reduce false alarms in intensive care units; detection and removal of noise and motion
artifacts in biomedical signals such as ECG and bioimpedance; prediction of hemodynamic decompensation
using HRV; and detection of hemorrhagic shock, intradialytic hypotension, and low cardiac index using
wearable technology. This award will allow Dr. Ansari to acquire needed additional training in cardiovascular
physiology and heart failure pathophysiology through mentorship, didactic training, attending workshops and
scientific meetings, and clinical exposure, preparing him for an independent career focused on developing
diagnostic and clinical decision support tools for cardiovascular medicine.
使用多模态数据分析预测心力衰竭发作
学习和商业可穿戴设备
项目总结/摘要
研究:心力衰竭是美国死亡率和医疗费用的主要原因之一
States.到2030年,心力衰竭患者人数预计将达到800万。如果我们能预测谁会
发生心力衰竭,这将创造一个机会,通过以下方式改善患者体验和结局:
开始早期的行为和治疗干预。电子健康记录(EHR)包含信息
可以用来在心力衰竭发作前预测它。然而,现有的模型导致大量的
假阳性预测,限制了它们的临床应用。PI建议增加EHR数据,
心电图(ECG)和心率变异性(HRV)特征,以提高预测的准确性
提前12个月出现心力衰竭。三种数据模式(EHR、ECG和HRV)将
使用深度学习方法进行分析,包括PI提出的新技术。模特们将在
使用密歇根医学的患者数据进行回顾性研究和验证。的第二个目的
该提案旨在通过用以下方法取代临床测量的ECG和HRV来增加这项研究的影响力:
通过诸如智能手表的消费者可穿戴设备获得的那些。前瞻性患者队列将佩戴
可穿戴设备七天,这将允许PI确定收集的信息是否
(间歇性ECG、来自光电容积描记术的连续HRV和体动描记术),结合EHR,
可以为临床医生提供更有效的工具来识别哪些患者有心力衰竭的风险。虽然这
尽管这种方法将使更多的患者受益,但它仍将仅限于那些有既往病史的患者。到
进一步扩大这项研究的影响,以那些谁穿消费者可穿戴设备,但没有以前的
病史,一个有限的模型,只依赖于可穿戴设备收集的信息将是
评估。因此,本研究的结果将包括针对不同人群的多个模型,例如
有无既往病史者。候选人/职业发展:Sardar Ansari博士是一名计算机
科学家和统计学家,在生物医学信号处理,机器学习和医疗方面拥有专业知识
可穿戴设备他过去的研究经验包括分析心电图信号,以提高检测
心律失常和减少重症监护室的假警报;检测和消除噪音和运动
生物医学信号中的伪影,如ECG和生物阻抗;预测血流动力学失代偿
使用心率变异性;和检测出血性休克,透析中低血压,和低心脏指数,使用
可穿戴技术该奖项将使安萨里博士获得所需的额外培训,在心血管
生理学和心力衰竭病理生理学,通过指导,教学培训,参加研讨会,
科学会议和临床接触,为他的独立职业生涯做好准备,专注于开发
心血管医学的诊断和临床决策支持工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sardar Ansari其他文献
Sardar Ansari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sardar Ansari', 18)}}的其他基金
Prediction of Heart Failure Onset using Multimodal Data Analysis, Deep Learning and Commercial Wearables
使用多模态数据分析、深度学习和商业可穿戴设备预测心力衰竭发作
- 批准号:
10463763 - 财政年份:2021
- 资助金额:
$ 16.35万 - 项目类别:
Prediction of Heart Failure Onset using Multimodal Data Analysis, Deep Learning and Commercial Wearables
使用多模态数据分析、深度学习和商业可穿戴设备预测心力衰竭发作
- 批准号:
10300375 - 财政年份:2021
- 资助金额:
$ 16.35万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 16.35万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 16.35万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 16.35万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 16.35万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 16.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 16.35万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 16.35万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 16.35万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 16.35万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 16.35万 - 项目类别:
Miscellaneous Programs