Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
基本信息
- 批准号:10681360
- 负责人:
- 金额:$ 15.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-25 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AirAlgorithmsAnimal ModelAnimalsBindingBiometryBiopsyBlood VesselsBreathingCardiovascular DiseasesChest imagingClinicalClinical TrialsClinical Trials DesignCollagenCollagen Type IDataDepositionDiagnosisDiseaseDisease ProgressionEarly DiagnosisFibrosisFreezingFunctional disorderGalliumGoalsGrantHigh Resolution Computed TomographyHumanImageImage AnalysisImaging DeviceIndividualLabelLungMagnetic ResonanceMagnetic Resonance ImagingMapsMeasurementMeasuresMentorsMetabolismMethodsModelingMolecularMolecular AbnormalityMonitorMorphologic artifactsMorphologyMotionOncologyOutcomeOutputPathogenicityPatient CarePatientsPhasePhotonsPhysicsPhysiologyPositron-Emission TomographyPredispositionProcessPrognosisProtocols documentationProtonsPulmonary FibrosisPulmonary function testsRadialResearchResearch ProposalsRotationSamplingSchemeSelection for TreatmentsServicesSignal TransductionStable DiseaseStructure of parenchyma of lungTechniquesTherapeutic EffectTherapeutic InterventionTimeTissuesTrainingTranslatingVariantWritingX-Ray Computed Tomographyanatomic imagingattenuationblood fractionationcareercontrast enhancedcontrast imagingdensitydesigndrug developmentfibrotic lungfirst-in-humanhealthy volunteerhuman diseaseidiopathic pulmonary fibrosisimaging approachimprovedin vivoindium-bleomycininjuredlung imaginglung injurymolecular imagingnervous system disordernovelnovel therapeutic interventionoptimal treatmentsprogramspulmonary functionquantitative imagingradiological imagingrespiratorysegmentation algorithmsimulationskillstreatment responseuptake
项目摘要
Project Summary/Abstract
The goal of this project is to develop and implement a MR-PET lung imaging tool to accurately quantify
molecular abnormalities associated with pulmonary fibrosis. Idiopathic pulmonary fibrosis (IPF) is a progressive
and ultimately fatal disease with a median survival of less than 4 years from the time of diagnosis. The treatment
options remain limited due to highly variable clinical course and poorly understood pathogenic mechanisms.
Current strategies to diagnose and monitor IPF include lung biopsy, pulmonary function tests that measure global
lung function, and anatomic imaging tools such as high-resolution computed tomography. Yet these methods
are limited in their ability to detect disease early, determine disease activity, provide accurate prognosis or
monitor the therapeutic response. Molecular imaging may be an alternative approach that is more sensitive to
detect early fibrosis and potentially capable of distinguishing new, active fibrosis from stable disease – urgent
and unmet clinical needs. Advancing the capacity of quantitative imaging tools to determine IPF disease activity
would improve patient care and facilitate much-needed drug development. Our central hypothesis is that non-
invasive MR-aided PET imaging of collagen accumulation will allow us to capture the extent of ongoing lung
injury in IPF patients and thus service as a viable disease activity measure. Magnetic resonance (MR) imaging
can provide multiple readouts of morphology, physiology, metabolism, and molecular processes, while positron
emission tomography (PET) offers exquisite sensitivity to interrogate pathobiology. Advanced MR and PET
techniques have had major impacts in oncology, cardiovascular diseases, and neurological disorders. However,
their application to lung imaging has been historically limited because of low proton density and the fast signal
decay due to susceptibility artefacts at air-tissue interfaces for MRI, while PET quantification remains challenging
due to respiratory motion, photon attenuation and regional variations in tissue, air and blood fractions. Recently,
we developed a gallium(Ga)-68 labeled collagen binding PET probe for fibrosis imaging. Ex vivo measurement
showed a 5-fold higher uptake in bleomycin injured fibrotic lungs than controls. However, both in vivo animal
and first-in-human studies showed a PET signal difference of 35-40%. This discrepancy highlights the
importance of motion, attenuation and partial volume correction in PET quantification. Our preliminary simulation
results show that attenuation and motion correction substantially increase the imaging contrast. Recent technical
advances such as parallel imaging, ultra-short time to echo (UTE) and rotating phase encoding have enabled
advanced proton MR imaging of the lung. Thus simultaneous MR-PET promises to improve PET quantification
by using the spatially and temporally correlated MR information to correct for motion, partial volume and photon
attenuation effects. Capitalizing on the technical advances in imaging and the sensitive collagen-targeted probe,
this proposal aims to establish an MR-PET lung imaging tool to accurately quantify collagen deposition in the
lung of IPF patients for precise assessment of disease activity.
项目摘要/摘要
该项目的目标是开发和实施一种MR-PET肺成像工具,以准确地量化
与肺纤维化相关的分子异常。特发性肺纤维化(IPF)是一种进行性的
最终是致命的疾病,从确诊之日起中位生存期不到4年。治疗方法
由于高度可变的临床病程和对致病机制的了解很少,选择仍然有限。
目前诊断和监测IPF的策略包括肺活检、肺功能测试
肺功能,以及高分辨率计算机断层扫描等解剖成像工具。然而,这些方法
在早期发现疾病、确定疾病活动性、提供准确的预后或
监测治疗反应。分子成像可能是一种更敏感的替代方法
检测早期纤维化,并有可能区分新的、活跃的纤维化和稳定的疾病-紧急
以及未得到满足的临床需求。提高定量成像工具确定IPF疾病活动性的能力
将改善患者护理并促进急需的药物开发。我们的中心假设是
有创的MR辅助的胶原堆积的PET成像将使我们能够捕捉到正在进行的肺的范围
因此,它可以作为一种可行的疾病活动性衡量标准。磁共振(MR)成像
可以提供形态、生理、代谢和分子过程的多种读数,而正电子
发射断层扫描(PET)为询问病理生物学提供了极高的灵敏度。高级磁共振和正电子发射计算机断层扫描
技术在肿瘤学、心血管疾病和神经疾病方面产生了重大影响。然而,
由于低质子密度和快速信号,它们在肺部成像中的应用历来受到限制
磁共振成像中空气-组织界面的易感性伪影引起的衰减,而正电子发射计算机断层扫描的定量仍然具有挑战性
由于呼吸运动、光子衰减以及组织、空气和血液成分的区域差异。最近,
我们研制了一种用于纤维化成像的镓(Ga)-68标记的胶原结合的PET探针。体外测量
显示博莱霉素损伤的纤维化肺的摄取率是对照组的5倍。然而,无论是在活体动物中
首次在人体内进行的研究表明,PET信号的差异为35%-40%。这一差异突出了
运动、衰减和部分体积校正在PET定量中的重要性。我们的初步模拟
结果表明,衰减和运动校正显著提高了成像对比度。最近的技术
并行成像、超短回波时间(UTE)和旋转相位编码等先进技术已成为可能
先进的肺部质子磁共振成像技术。因此,同步MR-PET有望提高PET的定量
通过使用空间和时间相关的MR信息来校正运动、部分体积和光子
衰减效果。利用成像技术的进步和灵敏的胶原蛋白靶向探针,
这项建议旨在建立一种MR-PET肺成像工具,以准确定量胶原沉积在
以精确评估IPF患者的肺部疾病活动性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iris Yuwen Zhou其他文献
Iris Yuwen Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iris Yuwen Zhou', 18)}}的其他基金
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10269911 - 财政年份:2020
- 资助金额:
$ 15.96万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10468922 - 财政年份:2020
- 资助金额:
$ 15.96万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
9977573 - 财政年份:2020
- 资助金额:
$ 15.96万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10769999 - 财政年份:2020
- 资助金额:
$ 15.96万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant














{{item.name}}会员




