Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
基本信息
- 批准号:10681360
- 负责人:
- 金额:$ 15.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-25 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AirAlgorithmsAnimal ModelAnimalsBindingBiometryBiopsyBlood VesselsBreathingCardiovascular DiseasesChest imagingClinicalClinical TrialsClinical Trials DesignCollagenCollagen Type IDataDepositionDiagnosisDiseaseDisease ProgressionEarly DiagnosisFibrosisFreezingFunctional disorderGalliumGoalsGrantHigh Resolution Computed TomographyHumanImageImage AnalysisImaging DeviceIndividualLabelLungMagnetic ResonanceMagnetic Resonance ImagingMapsMeasurementMeasuresMentorsMetabolismMethodsModelingMolecularMolecular AbnormalityMonitorMorphologic artifactsMorphologyMotionOncologyOutcomeOutputPathogenicityPatient CarePatientsPhasePhotonsPhysicsPhysiologyPositron-Emission TomographyPredispositionProcessPrognosisProtocols documentationProtonsPulmonary FibrosisPulmonary function testsRadialResearchResearch ProposalsRotationSamplingSchemeSelection for TreatmentsServicesSignal TransductionStable DiseaseStructure of parenchyma of lungTechniquesTherapeutic EffectTherapeutic InterventionTimeTissuesTrainingTranslatingVariantWritingX-Ray Computed Tomographyanatomic imagingattenuationblood fractionationcareercontrast enhancedcontrast imagingdensitydesigndrug developmentfibrotic lungfirst-in-humanhealthy volunteerhuman diseaseidiopathic pulmonary fibrosisimaging approachimprovedin vivoindium-bleomycininjuredlung imaginglung injurymolecular imagingnervous system disordernovelnovel therapeutic interventionoptimal treatmentsprogramspulmonary functionquantitative imagingradiological imagingrespiratorysegmentation algorithmsimulationskillstreatment responseuptake
项目摘要
Project Summary/Abstract
The goal of this project is to develop and implement a MR-PET lung imaging tool to accurately quantify
molecular abnormalities associated with pulmonary fibrosis. Idiopathic pulmonary fibrosis (IPF) is a progressive
and ultimately fatal disease with a median survival of less than 4 years from the time of diagnosis. The treatment
options remain limited due to highly variable clinical course and poorly understood pathogenic mechanisms.
Current strategies to diagnose and monitor IPF include lung biopsy, pulmonary function tests that measure global
lung function, and anatomic imaging tools such as high-resolution computed tomography. Yet these methods
are limited in their ability to detect disease early, determine disease activity, provide accurate prognosis or
monitor the therapeutic response. Molecular imaging may be an alternative approach that is more sensitive to
detect early fibrosis and potentially capable of distinguishing new, active fibrosis from stable disease – urgent
and unmet clinical needs. Advancing the capacity of quantitative imaging tools to determine IPF disease activity
would improve patient care and facilitate much-needed drug development. Our central hypothesis is that non-
invasive MR-aided PET imaging of collagen accumulation will allow us to capture the extent of ongoing lung
injury in IPF patients and thus service as a viable disease activity measure. Magnetic resonance (MR) imaging
can provide multiple readouts of morphology, physiology, metabolism, and molecular processes, while positron
emission tomography (PET) offers exquisite sensitivity to interrogate pathobiology. Advanced MR and PET
techniques have had major impacts in oncology, cardiovascular diseases, and neurological disorders. However,
their application to lung imaging has been historically limited because of low proton density and the fast signal
decay due to susceptibility artefacts at air-tissue interfaces for MRI, while PET quantification remains challenging
due to respiratory motion, photon attenuation and regional variations in tissue, air and blood fractions. Recently,
we developed a gallium(Ga)-68 labeled collagen binding PET probe for fibrosis imaging. Ex vivo measurement
showed a 5-fold higher uptake in bleomycin injured fibrotic lungs than controls. However, both in vivo animal
and first-in-human studies showed a PET signal difference of 35-40%. This discrepancy highlights the
importance of motion, attenuation and partial volume correction in PET quantification. Our preliminary simulation
results show that attenuation and motion correction substantially increase the imaging contrast. Recent technical
advances such as parallel imaging, ultra-short time to echo (UTE) and rotating phase encoding have enabled
advanced proton MR imaging of the lung. Thus simultaneous MR-PET promises to improve PET quantification
by using the spatially and temporally correlated MR information to correct for motion, partial volume and photon
attenuation effects. Capitalizing on the technical advances in imaging and the sensitive collagen-targeted probe,
this proposal aims to establish an MR-PET lung imaging tool to accurately quantify collagen deposition in the
lung of IPF patients for precise assessment of disease activity.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iris Yuwen Zhou其他文献
Iris Yuwen Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iris Yuwen Zhou', 18)}}的其他基金
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10269911 - 财政年份:2020
- 资助金额:
$ 15.96万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10468922 - 财政年份:2020
- 资助金额:
$ 15.96万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
9977573 - 财政年份:2020
- 资助金额:
$ 15.96万 - 项目类别:
Quantitative MRI-PET Imaging of Pulmonary Fibrosis
肺纤维化的定量 MRI-PET 成像
- 批准号:
10769999 - 财政年份:2020
- 资助金额:
$ 15.96万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 15.96万 - 项目类别:
Continuing Grant














{{item.name}}会员




