Crowd-Powered Machine Learning to Diagnose ASD and ADHD in Adolescents from Digital Social Interactions

众包机器学习通过数字社交互动诊断青少年 ASD 和 ADHD

基本信息

  • 批准号:
    10682965
  • 负责人:
  • 金额:
    $ 130.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-21 至 2026-09-20
  • 项目状态:
    未结题

项目摘要

Project Summary Digital technologies have the potential to provide remote and accessible psychiatric diagnostics to underserved families who have traditionally been left out of the healthcare system. Several recent research efforts have explored the use of structured behavioral data collection using digital devices coupled with automatic machine learning (ML) algorithms to distinguish a particular psychiatric condition from neurotypical controls. While these pure ML approaches have achieved performances >90% on balanced classification metrics on binary prediction tasks, there are limits to their ability to feasibly quantify the complex, social behavioral features needed for multi- condition and higher precision diagnostics. To enable such specificity for digital psychiatric diagnostics, I propose a novel paradigm-shifting approach which incorporates original crowdsourcing algorithms into the ML feature extraction process to create representation vectors of nuanced social behaviors with sufficient discriminative power to distinguish related and overlapping neuropsychiatric conditions such as Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder. Crowdsourcing, or the use of distributed workers to collectively work towards a larger task, is traditionally used to label training data for ML and is increasingly leveraged as a tool to run public health studies. However, crowdsourcing has yet to be thoroughly explored as a central tool in precision diagnostics for psychiatry. In the proposed paradigm, each crowd worker will answer targeted multiple choice questions about each video, reducing the feature space into a socially rich feature vector corresponding to the behaviors displayed in the video. My innovative crowdsourcing framework involves creating a quantified profile of each crowd worker to dynamically assign them to labeling tasks based on the categories of questions they rate in accordance with clinical experts. This crowdsourcing pipeline will be tested with respect to 3 major components of the digital diagnostics pipeline: (1) gamified structured video data curation from each participant, (2) behavioral feature extraction, and (3) diagnostic prediction with deep learning. The structured data collection will occur through paired social interactions between participants who remotely interact by playing social games on the web while their webcam and microphone record their behaviors. Crowd workers will watch the videos and answer multiple choice questions pertaining to the subject’s behavior in the video. The crowd annotations and metadata will be supplemented with computationally extracted eye gaze, facial emotion expression, vocal pitch, and speech timing features. These features will be collectively used to train a deep learning model which outputs both diagnostic categories and indicators of the presence of individual behavioral characteristics (e.g., hyperactivity and distractibility). Based on crowd labels of earlier games, additional games will be assigned to each subject in future data curation sessions. This paradigm has the potential to enable more nuanced behavior- based digital diagnostics, working towards a clinical workflow which can provide remote access to diagnoses for underserved populations who typically struggle to obtain neuropsychiatric healthcare.
项目总结

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Washington其他文献

Peter Washington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 130.95万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 130.95万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 130.95万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 130.95万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 130.95万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 130.95万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 130.95万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 130.95万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 130.95万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 130.95万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了