A blind source separation approach for deconvolution of bulk transcriptional data leads to early detection of ATF cell-states in complex bacterial populations, in vitro and in vivo
用于批量转录数据去卷积的盲源分离方法可以在体外和体内早期检测复杂细菌群体中的 ATF 细胞状态
基本信息
- 批准号:10703357
- 负责人:
- 金额:$ 84.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-12 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAntibiotic ResistanceAntibiotic TherapyAntibiotic susceptibilityAntibioticsAntimicrobial ResistanceBacteriaCellsClinicalCommunicable DiseasesComplexCustomDataData SetDetectionDevelopmentDiagnosticDiseaseDrug resistanceEarly DiagnosisEntropyEpigenetic ProcessExposure toFailureFrequenciesFutureGenesGenetic TranscriptionGoalsImmune systemImmunocompromised HostImmunotherapeutic agentIn VitroInfectionIntermediate resistanceLinkMachine LearningMaintenanceMalignant NeoplasmsMapsMeasurementMethodsMinorityModelingMusMutationPathway interactionsPatientsPharmaceutical PreparationsPhenotypePhysiciansPopulationPredispositionResistanceSamplingSerumSourceSpeedStressTechnologyTestingTimeTissuesTreatment FailureTumor TissueValidationWorkblindcancer cellcancer typeclinical diagnosticsdesigndiagnostic assaydiagnostic strategyexperienceexperimental studyimprovedin vivomachine learning algorithmmagnetic beadsnano-stringnanoporenovel diagnosticspressurepreventreconstitutionresistance mutationresponsesingle-cell RNA sequencingtargeted treatmenttechnology developmenttooltranscriptome sequencingtreatment strategy
项目摘要
SUMMARY – PROJECT 3
Transient bacterial cell-states including tolerance, persistence and hetero-resistance (HR) are harbingers of
antibiotic treatment failure (ATF) and enablers of antibiotic resistance. Importantly, they are missed in any
currently employed diagnostic assay or antibiotic susceptibility tests. Intriguingly, in the treatment of different
types of cancer, physicians are often confronted with similar treatment failure issues. It turns out that these
epigenetic cell-states create extended opportunities for high-level resistance mutations to emerge. Moreover,
due to the phenotype’s transience, they themselves can directly drive the re-emergence of the (susceptible)
population after drug pressure subsides. While these cell-states are increasingly recognized as drivers that sit
at the root of treatment failure, new strategies are emerging to specifically identify, track and target them. To
achieve such highly targeted treatment, approaches are developed that map out the composition of complex
cancer tissue, for instance through single cell RNA-Seq (scRNA-Seq), or computational deconvolution of bulk
RNA-Seq data. While, scRNA-Seq on bacteria remains technically challenging we found that by modifying
existing tools, specific bacterial cell-states can be identified in complex bacterial populations. However, the
capabilities of current tools are limited, and through the implementation of state-of-the-art machine learning
algorithms there is much room for improvement. Moreover, ATF cell-states are poorly characterized, making it
currently impossible to effectively define them. Herein, 3 aims are pursued to develop an approach that, based
on bulk RNA-Seq data, dissects a complex bacterial population into its separate cell-states, and calculates their
frequencies and MICs. In Aim 1 a large and diverse temporal RNA-Seq dataset is generated by following a wide
variety of strains and species while they are exposed to antibiotics and a subset of the population switches to an
ATF cell state. In Aim 2 a blind source separation algorithm is explored to design a state-of-the-art machine
learning tool that deconvolves bulk RNA-Seq data from a complex bacterial population into the cell-states and
their frequencies that make up the population. Moreover, by reconstituting each cell-state’s expression profile
we enable transcriptional entropy calculations and thereby cell-state specific MIC predictions. In Aim 3 the
approach is validated by retrospectively predicting the presence of ATF cell-states in patient samples. Finally,
the model’s applicability is extended to bulk dual RNA-Seq data from host and bacterium, and validated on
patient serum samples. This project therefore not only informs on how ATF cell-states develop and are
maintained in a population, but also creates a path towards the development of diagnostics that can detect them
in an active infection. Combined with the collateral sensitivities from Project 2 this could eventually enable linking
detection to targeted treatment decisions.
摘要-项目3
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tim van Opijnen其他文献
Tim van Opijnen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tim van Opijnen', 18)}}的其他基金
A priori adaptive evolution predictions for antibiotic resistance through genome-wide network analyses and machine learning
通过全基因组网络分析和机器学习对抗生素耐药性进行先验适应性进化预测
- 批准号:
10155396 - 财政年份:2020
- 资助金额:
$ 84.95万 - 项目类别:
Predicting species-wide virulence for a bacterial pathogen with a large pan-genome
预测具有大型泛基因组的细菌病原体的物种范围毒力
- 批准号:
9199847 - 财政年份:2016
- 资助金额:
$ 84.95万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 84.95万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 84.95万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 84.95万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 84.95万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 84.95万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 84.95万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 84.95万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 84.95万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 84.95万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 84.95万 - 项目类别:
Research Grant














{{item.name}}会员




