Developmental Regulation of Potassium Channels in Hypothalamic Neurons Governing Energy Homeostasis
控制能量稳态的下丘脑神经元钾通道的发育调节
基本信息
- 批准号:10701674
- 负责人:
- 金额:$ 13.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-09 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAwardBiological AssayBirdsBody WeightBrainBrain regionCell NucleusCellsCentral Nervous SystemComplexDataDevelopmentDiabetes MellitusEarly InterventionEatingElectrophysiology (science)EmbryoEnergy MetabolismEquilibriumExposure toFamilyFood EnergyGene ExpressionGoalsHealthHomeostasisHormonalHormonesHumanHypothalamic structureImmunofluorescence ImmunologicInsulinInsulin ReceptorInterventionIon ChannelIon Channel GatingKnowledgeKnowledge DiscoveryLaboratoriesLifeLong-Term EffectsMaintenanceMeasuresMediatingMedicalMembrane PotentialsMetabolicMetabolic DiseasesMetabolic hormoneMetabolismModelingNeuronsNutritionalObesityPathway interactionsPatternPeripheralPharmacologic SubstancePhosphotransferasesPhysiologicalPositioning AttributePotassium ChannelPredispositionPrevention strategyProcessPropertyProteinsPublishingReceptor SignalingRegulationResearchResearch PersonnelRestRoleSignal TransductionSliceSystemTechniquesTestingTimeTissuesTrainingTyrosine PhosphorylationUniversitiesUp-RegulationVoltage-Gated Potassium ChannelWorkinsightinsulin sensitivityinsulin signalingintrauterine environmentmemberneuronal excitabilitynovel therapeutic interventionreceptorsensortreatment strategyundergraduate studentvoltage
项目摘要
PROJECT SUMMARY/ABSTRACT
The long-term goal of this work is to understand how metabolic signaling can alter the functional development
of energy homeostasis pathways through the modulation of specific ion channels in hypothalamic neurons. The
hypothalamus is a brain region that mediates the regulation of critical metabolic processes throughout the
body. Specialized hypothalamic neurons can integrate the homeostatic balance between food intake and
energy expenditure via peripheral signals, a process that may become dysregulated in obesity and other
metabolic disorders. Evidence indicates that the function of Kv1.3, a voltage-gated potassium channel
governing neuronal excitability and resting membrane potential, can be modulated by circulating peripheral
signals such as insulin, although the role of this modulation in the early development of hypothalamic circuits
remains unclear. The central hypothesis of this proposal is that insulin modulates the developmental
function of Kv1.3 in hypothalamic neurons governing energy homeostasis. The central hypothesis will be
tested with the following specific aims: (1) identify the developmental colocalization of Kv1.3 and the insulin
receptor (IR) in specific hypothalamic nuclei governing energy homeostasis, (2) define how hypothalamic
Kv1.3 channels are functionally modulated by insulin during development, and (3) determine the role of
heteromultimeric Kv1 complexes in channel regulation of the developing hypothalamus. In order to achieve the
experimental objectives, immunofluorescence will be used to identify Kv1.3 and IR protein at different
developmental stages in specific hypothalamic nuclei involved in metabolic function. To test the hypothesis that
insulin regulates neuronal activity via suppression of Kv1.3, brain slices of the avian hypothalamus will be
exposed to exogenous insulin and changes in ion channel function will be recorded using electrophysiological
techniques. Subsequently, in ovo hormone application will be used to determine the long-term effect of insulin
exposure on the electrophysiological function of Kv1.3 in hypothalamic neurons at critical embryological time
points. The physiological effects of Kv1 channel heteromultimerization on the insulin-sensitive function of Kv1.3
channels in hypothalamic neurons will also be explored. This proposal will be the first to elucidate the
developmental role of insulin exposure on Kv1.3 channel function in hypothalamic neurons governing energy
homeostasis. Examining the developmental regulation of Kv1.3 in this embryonic system will provide new
insight fundamental to understanding the early patterning of hypothalamic circuits and may provide further
evidence targeting these potassium channels in the pharmaceutical intervention of metabolic disorders such as
diabetes and obesity.
项目摘要/摘要
这项工作的长期目标是了解代谢信号如何改变功能发育
通过调节下丘脑神经元中特定离子通道的能量动态平衡通路。这个
下丘脑是大脑的一个区域,在整个大脑中调节关键的代谢过程。
尸体。专门的下丘脑神经元可以整合食物摄入量和食物之间的动态平衡。
通过外周信号的能量消耗,这一过程可能会在肥胖和其他疾病中变得失调
代谢紊乱。有证据表明,电压门控性钾通道Kv1.3的功能
循环外周调节神经元兴奋性和静息膜电位
信号,如胰岛素,尽管这种调制在下丘脑电路早期发育中的作用
目前仍不清楚。这一建议的中心假设是胰岛素调节发育
Kv1.3在下丘脑神经元调节能量动态平衡中的作用。中心假设将是
测试的具体目标如下:(1)确定Kv1.3和胰岛素的发育共定位
下丘脑特定核团中控制能量平衡的受体(IR),(2)定义下丘脑如何
Kv1.3通道在发育过程中受胰岛素的功能调节,以及(3)决定Kv1.3通道的作用
异多聚体KV1复合体在发育中的下丘脑通道调节中的作用。为了实现这一目标
实验目的:将免疫荧光法用于鉴定Kv1.3和IR蛋白的不同
参与代谢功能的特定下丘脑核团的发育阶段。来检验这一假设
胰岛素通过抑制Kv1.3调节神经元活动,鸟下丘脑脑片将
暴露于外源性胰岛素和离子通道功能的变化将使用电生理记录
技巧。随后,在卵子中应用激素来确定胰岛素的长期疗效。
胚胎发育临界期对下丘脑神经元Kv1.3电生理功能的影响
积分。Kv1通道异构化对Kv1.3胰岛素敏感功能的生理影响
下丘脑神经元中的通道也将被探索。这项提案将是第一个澄清
胰岛素暴露对下丘脑能量支配神经元Kv1.3通道功能的发育作用
动态平衡。研究Kv1.3在这个胚胎系统中的发育规律将提供新的
洞察力是理解下丘脑回路早期模式的基础,并可能进一步提供
以这些钾通道为靶点的药物干预代谢紊乱的证据
糖尿病和肥胖症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan A Doczi其他文献
Megan A Doczi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Megan A Doczi', 18)}}的其他基金
Developmental Regulation of Potassium Channels in Hypothalamic Neurons Governing Energy Homeostasis
控制能量稳态的下丘脑神经元钾通道的发育调节
- 批准号:
10411760 - 财政年份:2022
- 资助金额:
$ 13.31万 - 项目类别:
相似海外基金
Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
- 批准号:
EP/Z531480/1 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
- 批准号:
EP/Z531509/1 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
- 批准号:
EP/Z53156X/1 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
- 批准号:
EP/Z531625/1 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
- 批准号:
EP/Z531728/1 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/Z531844/1 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Natural History Museum
2024 年开放访问区块奖 - 自然历史博物馆
- 批准号:
EP/Z531856/1 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Brighton
2024 年开放获取区块奖 - 布莱顿大学
- 批准号:
EP/Z531935/1 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Bristol
2024 年开放获取区块奖 - 布里斯托大学
- 批准号:
EP/Z531947/1 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Research Grant
Open Access Block Award 2024 - University of Bradford
2024 年开放获取区块奖 - 布拉德福德大学
- 批准号:
EP/Z531923/1 - 财政年份:2024
- 资助金额:
$ 13.31万 - 项目类别:
Research Grant