Understanding the multiscale basis of solute transport in the cartilage endplate
了解软骨终板中溶质转运的多尺度基础
基本信息
- 批准号:10701756
- 负责人:
- 金额:$ 7.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdvanced Glycosylation End ProductsAffectAgeAgingAnisotropyAreaBiochemicalBiochemistryBiological AssayBiological Response Modifier TherapyCadaverCartilageCellsCharacteristicsChargeChronic low back painClinicalCollagenCollagen FibrilDataData SetDepositionDiseaseElectron MicroscopyEquilibriumFaceFreezingGenesGrantGrowth FactorGuidelinesHarvestHumanHydration statusImpairmentIn VitroIncubatedInvestigationIonsKnowledgeLengthLinkLow Back PainMeasurementMeasuresMedicalMineralsModelingModificationMusculoskeletalNanoporousNatureNutrientOperative Surgical ProceduresOutcomePenetrationPermeabilityPlayPorosityPropertyProteoglycanResearchRoleSamplingScanning Electron MicroscopySeriesStructureSwellingTestingThickTissuesTrainingTransmission Electron MicroscopyVariantWaterWorkaggrecancrosslinkdisabilitydisc regenerationdriving forceexperimental studyglucose uptakeintervertebral disk degenerationmicroscopic imagingmillimeternanonanometernanoscalenovelnucleus pulposusnutritionpatient responsepreservationpressuresoft tissuesolutetreatment responseuptake
项目摘要
PROJECT ABSTRACT
Low back pain is the leading cause of disability and linked to disc degeneration. Existing treatments for
disc degeneration are surgical in nature, and thus, there is an unmet need for non-surgical alternatives.
Intradiscal therapy looks promising but it requires high nutrition supply. Nutrients and metabolites entering and
exiting the nucleus pulposus must penetrate the cartilage endplate (CEP) and its permeability depends on matrix
biochemical composition (matrix quantity) and structure, for example, increased deposition of mineral,
proteoglycans, or collagen limits the physical pore space available for solutes to pass, while a dense and
damaged CEP matrix from degenerated discs might impair nutrient transport than an intact CEP. Indeed, a prior
study from our lab showed that higher AGE content in the CEP associates with lower solute uptake for a given
amount of matrix. Despite a general understanding of how matrix quantity and quality impact bulk CEP transport
properties, knowledge about transport in relation to the multiscale organization of the CEP matrix constituents is
lacking. These gaps motivate my main hypotheses that 1) higher glucose uptake is positively correlated with
structural characteristics across multiple length scales, including greater pore network connectivity and a higher
degree of matrix organization, and 2) low CEP transport properties correlate with higher AGEs, independent of
matrix quantity. These hypotheses will be tested through the following two aims. In Aim 1, I will discover the
structural organization of the CEP matrix across millimeter to nanometer, and how these hierarchical structure
affects solute transport properties. A total of 126 samples of human CEP tissue (from 15 cadavers) will be
harvested and then ordered as three groups by the rank of nutrient transport (high, middle, and low uptake).
Then, these will be related to biochemical compositions, tissue hydration, and bulk material properties (porosity
and thickness). Local material properties (micro- and nano- porosity and pore size/distribution) will be measured
and compared with the other quanfiable data, such as pore connectivity, pore size distribution, and
collagen/matrix anisotropy. A series of 2D dataset will be obtained, segmented, and reconstructed to quantify
pore area/volume and in 3D. These structural outcomes will be related to biochemical composition, hydration,
and porosity. In Aim 2, I will identify nanostructural and biochemical changes altered by the effect of in-vitro
ribosylation assay. Previous studies showed that negatively charged sGAG attracts water, while increased levels
of AGEs negatively correlated to tissue hydration. I will develop an in-vitro ribosylation assay and a glucose
uptake assay to measure the variation AGE contents (control vs. incubated) of the CEP samples. Lastly, the
obtained data will be related to the changes of matrix charge distribution, nanoporosity, and collagen D-period
spacing. These studies will clarify and characterize the effect of hierarchical structure and matrix quality
modification of CEP tissue on solute transport.
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jae-Young Jung其他文献
Jae-Young Jung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jae-Young Jung', 18)}}的其他基金
Understanding the multiscale basis of solute transport in the cartilage endplate
了解软骨终板中溶质转运的多尺度基础
- 批准号:
10538239 - 财政年份:2022
- 资助金额:
$ 7.61万 - 项目类别:
相似海外基金
ADVANCED GLYCOSYLATION END PRODUCTS AND EFFECT OF MESANGIAL CELLS
高级糖基化最终产物和对系膜细胞的影响
- 批准号:
3776700 - 财政年份:
- 资助金额:
$ 7.61万 - 项目类别:
ADVANCED GLYCOSYLATION END PRODUCTS AND EFFECT OF MESANGIAL CELLS
高级糖基化最终产物和对系膜细胞的影响
- 批准号:
3840306 - 财政年份:
- 资助金额:
$ 7.61万 - 项目类别:
ADVANCED GLYCOSYLATION END PRODUCTS AND EFFECT OF MESANGIAL CELLS
高级糖基化最终产物和对系膜细胞的影响
- 批准号:
3855332 - 财政年份:
- 资助金额:
$ 7.61万 - 项目类别:
GLOMERULAR EFFECTS OF ADVANCED GLYCOSYLATION END PRODUCTS
高级糖基化最终产物对肾小球的影响
- 批准号:
5202002 - 财政年份:
- 资助金额:
$ 7.61万 - 项目类别:
GLOMERULAR EFFECTS OF ADVANCED GLYCOSYLATION END PRODUCTS
高级糖基化最终产物对肾小球的影响
- 批准号:
3754540 - 财政年份:
- 资助金额:
$ 7.61万 - 项目类别: