Understanding the multiscale basis of solute transport in the cartilage endplate
了解软骨终板中溶质转运的多尺度基础
基本信息
- 批准号:10701756
- 负责人:
- 金额:$ 7.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdvanced Glycosylation End ProductsAffectAgeAgingAnisotropyAreaBiochemicalBiochemistryBiological AssayBiological Response Modifier TherapyCadaverCartilageCellsCharacteristicsChargeChronic low back painClinicalCollagenCollagen FibrilDataData SetDepositionDiseaseElectron MicroscopyEquilibriumFaceFreezingGenesGrantGrowth FactorGuidelinesHarvestHumanHydration statusImpairmentIn VitroIncubatedInvestigationIonsKnowledgeLengthLinkLow Back PainMeasurementMeasuresMedicalMineralsModelingModificationMusculoskeletalNanoporousNatureNutrientOperative Surgical ProceduresOutcomePenetrationPermeabilityPlayPorosityPropertyProteoglycanResearchRoleSamplingScanning Electron MicroscopySeriesStructureSwellingTestingThickTissuesTrainingTransmission Electron MicroscopyVariantWaterWorkaggrecancrosslinkdisabilitydisc regenerationdriving forceexperimental studyglucose uptakeintervertebral disk degenerationmicroscopic imagingmillimeternanonanometernanoscalenovelnucleus pulposusnutritionpatient responsepreservationpressuresoft tissuesolutetreatment responseuptake
项目摘要
PROJECT ABSTRACT
Low back pain is the leading cause of disability and linked to disc degeneration. Existing treatments for
disc degeneration are surgical in nature, and thus, there is an unmet need for non-surgical alternatives.
Intradiscal therapy looks promising but it requires high nutrition supply. Nutrients and metabolites entering and
exiting the nucleus pulposus must penetrate the cartilage endplate (CEP) and its permeability depends on matrix
biochemical composition (matrix quantity) and structure, for example, increased deposition of mineral,
proteoglycans, or collagen limits the physical pore space available for solutes to pass, while a dense and
damaged CEP matrix from degenerated discs might impair nutrient transport than an intact CEP. Indeed, a prior
study from our lab showed that higher AGE content in the CEP associates with lower solute uptake for a given
amount of matrix. Despite a general understanding of how matrix quantity and quality impact bulk CEP transport
properties, knowledge about transport in relation to the multiscale organization of the CEP matrix constituents is
lacking. These gaps motivate my main hypotheses that 1) higher glucose uptake is positively correlated with
structural characteristics across multiple length scales, including greater pore network connectivity and a higher
degree of matrix organization, and 2) low CEP transport properties correlate with higher AGEs, independent of
matrix quantity. These hypotheses will be tested through the following two aims. In Aim 1, I will discover the
structural organization of the CEP matrix across millimeter to nanometer, and how these hierarchical structure
affects solute transport properties. A total of 126 samples of human CEP tissue (from 15 cadavers) will be
harvested and then ordered as three groups by the rank of nutrient transport (high, middle, and low uptake).
Then, these will be related to biochemical compositions, tissue hydration, and bulk material properties (porosity
and thickness). Local material properties (micro- and nano- porosity and pore size/distribution) will be measured
and compared with the other quanfiable data, such as pore connectivity, pore size distribution, and
collagen/matrix anisotropy. A series of 2D dataset will be obtained, segmented, and reconstructed to quantify
pore area/volume and in 3D. These structural outcomes will be related to biochemical composition, hydration,
and porosity. In Aim 2, I will identify nanostructural and biochemical changes altered by the effect of in-vitro
ribosylation assay. Previous studies showed that negatively charged sGAG attracts water, while increased levels
of AGEs negatively correlated to tissue hydration. I will develop an in-vitro ribosylation assay and a glucose
uptake assay to measure the variation AGE contents (control vs. incubated) of the CEP samples. Lastly, the
obtained data will be related to the changes of matrix charge distribution, nanoporosity, and collagen D-period
spacing. These studies will clarify and characterize the effect of hierarchical structure and matrix quality
modification of CEP tissue on solute transport.
项目摘要
腰痛是导致残疾的主要原因,并与椎间盘退变有关。现有的治疗方法
椎间盘退变本质上是外科手术,因此,对非手术替代疗法的需求尚未得到满足。
椎间盘内治疗看起来很有希望,但它需要很高的营养供应。营养素和代谢物进入和
离开髓核必须穿过软骨终板(CEP),其通透性取决于基质
生化成分(基质数量)和结构,例如,矿物质沉积增加,
蛋白多糖或胶原蛋白限制了可供溶质通过的物理孔隙空间,而稠密和
与完整的CEP相比,受损的CEP基质可能会损害营养物质的运输。事实上,一位高级
我们实验室的研究表明,CEP中较高的AGE含量与较低的溶质吸收有关
矩阵的数量。尽管对基质数量和质量如何影响散装CEP运输有一般了解
性质,与CEP基质成分的多尺度组织有关的运输知识是
缺乏。这些差距激发了我的主要假设,即1)较高的葡萄糖摄入量与
跨多个长度尺度的结构特征,包括更大的孔隙网络连通性和更高的
基质组织的程度,以及2)低CEP运输特性与较高的年龄相关,独立于
矩阵数量。这些假设将通过以下两个目标得到检验。在目标1中,我将发现
跨毫米到纳米的CEP矩阵的结构组织,以及这些层次结构是如何
影响溶质运移性质。总共126个人类CEP组织样本(来自15具身体)将被
收获后,根据养分运输的顺序(高、中、低吸收)将其分为三组。
然后,这些将与生化成分、组织水合作用和块状材料属性(孔隙率)相关
和厚度)。将测量局部材料属性(微米和纳米孔隙率以及孔大小/分布)
并与其他可量化的数据进行比较,如孔连通性、孔尺寸分布和
胶原/基质各向异性。将获得一系列2D数据集,对其进行分割和重建以量化
孔隙面积/体积和3D。这些结构结果将与生化成分、水合作用、
和孔隙度。在目标2中,我将确定由体外效应改变的纳米结构和生化变化。
核糖化试验。先前的研究表明,带负电荷的SGAG会吸引水,而水的含量会增加
AGEs与组织水合呈负相关。我将开发一种体外核糖化分析和葡萄糖
摄取试验测量CEP样品(对照和孵化)AGE含量的变化。最后,
得到的数据将与基质电荷分布、纳米孔和胶原D-周期的变化有关
间距。这些研究将阐明和表征层级结构和基质质量的影响
CEP组织对溶质转运的修饰。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jae-Young Jung其他文献
Jae-Young Jung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jae-Young Jung', 18)}}的其他基金
Understanding the multiscale basis of solute transport in the cartilage endplate
了解软骨终板中溶质转运的多尺度基础
- 批准号:
10538239 - 财政年份:2022
- 资助金额:
$ 7.61万 - 项目类别:
相似海外基金
ADVANCED GLYCOSYLATION END PRODUCTS AND EFFECT OF MESANGIAL CELLS
高级糖基化最终产物和对系膜细胞的影响
- 批准号:
3776700 - 财政年份:
- 资助金额:
$ 7.61万 - 项目类别:
ADVANCED GLYCOSYLATION END PRODUCTS AND EFFECT OF MESANGIAL CELLS
高级糖基化最终产物和对系膜细胞的影响
- 批准号:
3840306 - 财政年份:
- 资助金额:
$ 7.61万 - 项目类别:
ADVANCED GLYCOSYLATION END PRODUCTS AND EFFECT OF MESANGIAL CELLS
高级糖基化最终产物和对系膜细胞的影响
- 批准号:
3855332 - 财政年份:
- 资助金额:
$ 7.61万 - 项目类别:
GLOMERULAR EFFECTS OF ADVANCED GLYCOSYLATION END PRODUCTS
高级糖基化最终产物对肾小球的影响
- 批准号:
5202002 - 财政年份:
- 资助金额:
$ 7.61万 - 项目类别:
GLOMERULAR EFFECTS OF ADVANCED GLYCOSYLATION END PRODUCTS
高级糖基化最终产物对肾小球的影响
- 批准号:
3754540 - 财政年份:
- 资助金额:
$ 7.61万 - 项目类别: