Addressing racial and ethnic disparities in access to the liver transplant waiting list: a data science-focused and team-based approach
解决肝移植等候名单中的种族和民族差异:以数据科学为中心、基于团队的方法
基本信息
- 批准号:10681485
- 负责人:
- 金额:$ 17.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdherenceAdultAffectAwardAwarenessBioethicsBioethics ConsultantsCessation of lifeCharacteristicsChargeCirrhosisClinicalComplexDataData DisplayData ScienceData ScientistDecision MakingDecision Support SystemsDelphi TechniqueDisparityDocumentationDropoutEngineeringEpidemiologistEquityEthnic OriginEvaluationEvidence based interventionFeedbackFocus GroupsFundingFutureGoalsHealth Disparities ResearchHealthcareHepatologyHispanicInformaticsInstitutional RacismInterventionLearningLifeLiverLiver diseasesMachine LearningMeasuresMedicalMedical centerMentorsMethodsModelingMoldsOrganOutcomePathway interactionsPatientsPhysiciansPredictive AnalyticsProcessProcess MeasurePromoting Action on Research Implementation in Health Services frameworkProtocols documentationProviderPsychosocial Assessment and CarePublic Health SchoolsQualitative MethodsQualitative ResearchRaceResearchScientistSeverity of illnessSocioeconomic StatusSupervisionSystemTechniquesTestingTimeTrainingTransplant RecipientsTransplant SurgeonTransplantationVulnerable PopulationsWaiting ListsWorkaccess disparitiesblack patientclinical decision supportcohortcomorbiditycurative treatmentsdemographicsdesignethnic disparityexperiencehealth disparityhealth equityimplementation scienceimplementation trialimprovedinsightinterdisciplinary approachliver transplantationmachine learning methodmachine learning modelmathematical modelmortalitymultilevel analysispatient-level barrierspredictive modelingprimary outcomepsychosocialracial disparityracismresearch clinical testingsatisfactionsecondary outcomeskillssocialsocial health determinantssupervised learningsupport toolstool developmenttransplant centers
项目摘要
Project Summary
In the US, 4.5 million adults have liver disease, and liver transplantation (LT) is the only curative treatment for
those with cirrhosis; transplant centers are charged with determining recipients for a life-saving organ.
Disparities exist for patients listed for LT: Black patients are under-represented on 81% of US transplant center
waitlists, and 62% under-represent Hispanic patients. LT centers assess each patient’s appropriateness for
transplant, culminating in a decision to list for transplant or decline. If listed, patients are prioritized based on
disease severity and will either receive a liver or be de-listed for a variety of reasons, such as death. While
prior disparities research has targeted factors affecting post-listing outcomes (e.g., waitlist dropout, post-LT
survival), an upstream focus on pre-listing patient-level barriers, structural/institutional racism, and
interpersonal racism has not been well studied despite having high impact on equity for LT patients. LT listing
decision-making is variable. Objective clinical measures are utilized, but social determinants of health (SDOH,
e.g., racism, socioeconomic position) and subjectivity permeate data gathering, clinical observations, and
psychosocial assessments. A data-driven approach to LT listing has yet to be described. Predictive analytics
(supervised machine learning) can be harnessed to strengthen objectivity and minimize bias of complex
decision-making. Preliminary data from my qualitative work are the first to comprehensively outline potential
pathways resulting in the listing disparities and reveal that transplant center providers are cautiously optimistic
for machine learning-based clinical decision support tools in LT evaluation. The hypothesis is that timely
access to summarized, objective data can improve provider decision-making and listing disparities. Using a
multi-disciplinary approach to apply data science techniques from an equity perspective, Dr. Strauss will
leverage her strong relationships with experts from Johns Hopkins Medical Center: experienced transplant
team, transplant research lab, Malone Center for Engineering in Healthcare, School of Public Health social
epidemiologists, and the Berman Institute of Bioethics. The overarching project goal is to improve equity in LT
decision-making using a data-driven and team-based intervention; the overarching training goal is to gain skills
in machine learning, health equity interventions, and implementation science. AIM 1: Develop and internally
validate a machine learning-based model to assist LT listing decision-making. AIM 2: Create a data-driven,
equity-focused intervention for team decision-making in LT evaluation. AIM 3: Design a multicenter pilot
implementation trial of a data-driven, equity-focused intervention for LT evaluation. Impact: Through this
project, Dr. Strauss will develop a data-driven and equity-focused intervention that will address disparities in LT
listing. This mentored award will develop Dr. Strauss into an R01-funded, independent physician-scientist with
advanced skills in machine learning, health equity research, and implementation science.
项目摘要
在美国,450万成年人患有肝病,肝移植(LT)是唯一的治愈性治疗方法。
肝硬化患者;移植中心负责决定救命器官的接受者。
列出的LT患者存在差异:黑人患者在81%的美国移植中心代表性不足
等待名单,62%的西班牙裔患者代表不足。LT中心评估每位患者是否适合
移植,最终决定列出移植或拒绝。如果列出,则根据以下因素对患者进行优先排序
疾病的严重程度,并将接受肝脏或因各种原因(如死亡)而被除名。而
先前的差异研究已经将影响上市后结果的因素作为目标(例如,候补名单辍学,LT后
生存),上游重点关注预先列出的患者层面的障碍,结构性/制度性种族主义,以及
人际间的种族歧视虽然对LT患者的公平性有很大的影响,但尚未得到很好的研究。LT列表
决策是可变的。利用客观的临床措施,但健康的社会决定因素(SDOH,
例如,在一个实施例中,种族主义,社会经济地位)和主观性渗透到数据收集,临床观察,
心理社会评估。尚未描述以数据为驱动的长期列名方法。预测分析
(监督机器学习)可以用来加强客观性,最大限度地减少复杂的偏见。
决策的从我的定性工作的初步数据是第一次全面概述潜力
导致上市差异的途径,并显示移植中心提供者持谨慎乐观态度
用于LT评估中基于机器学习的临床决策支持工具。假设是及时的
访问汇总的客观数据可以改善提供商的决策和列出差异。使用
从公平的角度应用数据科学技术的多学科方法,施特劳斯博士将
利用她与约翰霍普金斯医学中心专家的牢固关系:经验丰富的移植
团队,移植研究实验室,马龙医疗保健工程中心,公共卫生学院社会
流行病学家和伯曼生物伦理学研究所。该项目的总体目标是提高LT的公平性
使用数据驱动和基于团队的干预进行决策;总体培训目标是获得技能
在机器学习,健康公平干预和实施科学。目标1:开发和内部
验证基于机器学习的模型,以协助LT上市决策。目标2:创建一个数据驱动的,
以公平为中心的干预,在LT评估团队决策。目标3:设计多中心试点
在长期评估中实施数据驱动、注重公平的干预试验。影响:通过这个
Strauss博士将开发一个数据驱动和以公平为中心的干预措施,以解决LT中的差异。
在上市这个指导奖将发展施特劳斯博士成为一个R 01资助的,独立的医生,科学家与
在机器学习、健康公平研究和实施科学方面的高级技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Teresa Strauss其他文献
Alexandra Teresa Strauss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Teresa Strauss', 18)}}的其他基金
Addressing racial and ethnic disparities in access to the liver transplant waiting list: a data science-focused and team-based approach
解决肝移植等候名单中的种族和民族差异:以数据科学为中心、基于团队的方法
- 批准号:
10506394 - 财政年份:2022
- 资助金额:
$ 17.25万 - 项目类别:
相似海外基金
Structural Racism, Pharmacy Closures and Disparities in Medication Adherence Among Older Adult Medicare Part-D Beneficiaries
结构性种族主义、药房关闭以及老年人医疗保险 D 部分受益人的药物依从性差异
- 批准号:
10568717 - 财政年份:2023
- 资助金额:
$ 17.25万 - 项目类别:
Medication Adherence and Cardio-Metabolic Control Indicators among Adult American Indians Receiving Tribal Health Services
接受部落卫生服务的成年美洲印第安人的药物依从性和心脏代谢控制指标
- 批准号:
10419967 - 财政年份:2022
- 资助金额:
$ 17.25万 - 项目类别:
Medication Adherence and Cardio-Metabolic Control Indicators among Adult American Indians Receiving Tribal Health Services
接受部落卫生服务的成年美洲印第安人的药物依从性和心脏代谢控制指标
- 批准号:
10592441 - 财政年份:2022
- 资助金额:
$ 17.25万 - 项目类别:
Leveraging Technology to Improve Medication Adherence in Adolescent and Young Adult Kidney or Liver Transplant Recipients
利用技术提高青少年和年轻肾移植或肝移植受者的药物依从性
- 批准号:
10369750 - 财政年份:2021
- 资助金额:
$ 17.25万 - 项目类别:
Leveraging Technology to Improve Medication Adherence in Adolescent and Young Adult Kidney or Liver Transplant Recipients
利用技术提高青少年和年轻肾移植或肝移植受者的药物依从性
- 批准号:
10633248 - 财政年份:2021
- 资助金额:
$ 17.25万 - 项目类别:
Leveraging Technology to Improve Medication Adherence in Adolescent and Young Adult Kidney or Liver Transplant Recipients
利用技术提高青少年和年轻肾移植或肝移植受者的药物依从性
- 批准号:
10487516 - 财政年份:2021
- 资助金额:
$ 17.25万 - 项目类别:
Mhealth for Pre-exposure Prophylaxis Adherence by Young Adult MSM
Mhealth 促进年轻 MSM 遵守暴露前预防
- 批准号:
10228564 - 财政年份:2018
- 资助金额:
$ 17.25万 - 项目类别:
Mhealth for Pre-exposure Prophylaxis Adherence by Young Adult MSM
Mhealth 促进年轻 MSM 遵守暴露前预防
- 批准号:
9347041 - 财政年份:2017
- 资助金额:
$ 17.25万 - 项目类别:
Mindfulness training with HIV-positive youth and adult family members to improve treatment adherence
对艾滋病毒呈阳性的青少年和成年家庭成员进行正念训练,以提高治疗依从性
- 批准号:
9480702 - 财政年份:2016
- 资助金额:
$ 17.25万 - 项目类别:
Mindfulness training with HIV-positive youth and adult family members to improve treatment adherence
对艾滋病毒呈阳性的青少年和成年家庭成员进行正念训练,以提高治疗依从性
- 批准号:
9906853 - 财政年份:2016
- 资助金额:
$ 17.25万 - 项目类别: