High-throughput screening for antihypertensive prescribing cascades

抗高血压处方级联的高通量筛选

基本信息

  • 批准号:
    10682502
  • 负责人:
  • 金额:
    $ 11.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Hypertension (HTN) is prevalent in nearly half of U.S. adults and treated with >3 million antihypertensive prescription fills per day in the U.S. Although commonly-used antihypertensives are generally well-tolerated, their ubiquitous use exposes millions of adults to potentially treatment-limiting adverse events (AEs), some of which are well-known, but many are non-specific or indistinguishable from HTN-related symptoms and not easily attributed to the offending antihypertensive. Failure to associate these AEs with the causative agent may prompt additional therapy to treat the AE—known as a “prescribing cascade”—with potentially important implications regarding polypharmacy, unnecessary costs, exposure to additional side effects, treatment nonadherence, and reduced quality of life, especially in older adults. Most prescribing cascade studies to date have been narrowly focused on drugs with a well-known AE that is highly specific to the drug, severely limiting our understanding of prescribing cascades occurring due to less well-known or non-specific AEs. This approach has resulted in slow knowledge generation and missed opportunities for comprehensively assessing and discovering new prescribing cascades. In line with NHLBI Strategic Objective 7 to “leverage emerging opportunities in data science to open new frontiers in research,” this proposal seeks to develop and utilize a novel methodologic approach for high-throughput screening of prescribing cascades and discover novel antihypertensive prescribing cascades using a nationally-representative administrative claims data source. This goal will be achieved via the following Aims: 1) elucidate candidate antihypertensive-related prescribing cascades using the SIDe Effect Resource, a collection of prescription labeling which include drug AEs and drug indications; 2) identify prescribing cascade signals occurring during real world use of antihypertensives using a Medicare database; and, 3) classify cascade signal detection and prioritize further research via an expert panel. The proposed work is expected to 1) identify and characterize the magnitude of common antihypertensive prescribing cascades, including those previously unknown; 2) develop an efficient framework for wide-scale assessment of prescribing cascade detection; and, 3) establish the basis for a compendium of known cascades. This proposal also builds logically towards future research applying this framework for discovery of prescribing cascades with cardiovascular (and other) treatments, assessing downstream consequences of prescribing cascades, and testing clinical decision support aids to prevent prescribing cascades.
项目摘要 高血压(HTN)在近一半的美国成年人中普遍存在,并使用> 300万种抗高血压药物进行治疗 尽管常用的抗高血压药通常耐受良好, 它们的普遍使用使数百万成年人暴露于潜在的治疗限制性不良事件(AE), 这是众所周知的,但许多是非特异性的或与HTN相关的症状无法区分, 很容易归因于抗高血压药未能将这些AE与致病因子联系起来, 提示额外的治疗,以治疗AE-称为“处方级联”-与潜在的重要 关于多种药物治疗的影响、不必要的费用、暴露于额外的副作用、治疗 不依从和生活质量下降,尤其是老年人。迄今为止,大多数处方级联研究 一直狭隘地集中在具有已知AE的药物上,这些AE对药物具有高度特异性,严重限制了 我们对因不太为人所知或非特异性AE而发生的处方级联的理解。这 这种方法导致知识生成缓慢,错过了全面评估的机会, 并发现新的处方级联。根据NHLBI战略目标7,“利用新兴 数据科学的机会,以开辟新的研究前沿,”这一建议旨在开发和利用一个 用于处方级联的高通量筛选的新方法学途径,并发现新的 抗高血压处方级联使用全国代表性的行政索赔数据源。 这一目标将通过以下目的实现:1)阐明候选抗高血压相关处方 使用SIDe Effect Resource的级联,SIDe Effect Resource是处方标签的集合,包括药物AE和 药物适应症; 2)识别在抗高血压药物的真实的使用期间发生的处方级联信号 使用医疗保险数据库;以及,3)对级联信号检测进行分类,并通过 专家小组。拟议的工作预计将1)确定和表征共同的规模 降压处方级联,包括那些以前未知的; 2)制定一个有效的框架 大规模评估处方级联检测;和,3)建立基础的简编 已知的级联。这一建议也建立在逻辑上对未来的研究应用这一框架, 发现心血管(和其他)治疗的处方级联,评估下游 处方级联的后果,并测试临床决策支持辅助工具,以防止处方 瀑布

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Michael Smith其他文献

MACHINE LEARNING PREDICTION MODEL OF BLOOD PRESSURE VARIABILITY
  • DOI:
    10.1016/s0735-1097(22)02572-4
  • 发表时间:
    2022-03-08
  • 期刊:
  • 影响因子:
  • 作者:
    Osama Dasa;Chen Bai;Mamoun Mardini;Steven Michael Smith;Eileen M. Handberg;Carl J. Pepine
  • 通讯作者:
    Carl J. Pepine

Steven Michael Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Michael Smith', 18)}}的其他基金

High-throughput screening for antihypertensive prescribing cascades
抗高血压处方级联的高通量筛选
  • 批准号:
    10516334
  • 财政年份:
    2022
  • 资助金额:
    $ 11.44万
  • 项目类别:
Advancing Personalized Hypertension Care through Big Data Science
通过大数据科学推进个性化高血压护理
  • 批准号:
    10439511
  • 财政年份:
    2018
  • 资助金额:
    $ 11.44万
  • 项目类别:
Advancing Personalized Hypertension Care through Big Data Science
通过大数据科学推进个性化高血压护理
  • 批准号:
    10229379
  • 财政年份:
    2018
  • 资助金额:
    $ 11.44万
  • 项目类别:

相似海外基金

I-Corps: Medication Adherence System
I-Corps:药物依从性系统
  • 批准号:
    2325465
  • 财政年份:
    2023
  • 资助金额:
    $ 11.44万
  • 项目类别:
    Standard Grant
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
  • 批准号:
    490105
  • 财政年份:
    2023
  • 资助金额:
    $ 11.44万
  • 项目类别:
    Operating Grants
An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
  • 批准号:
    10057526
  • 财政年份:
    2023
  • 资助金额:
    $ 11.44万
  • 项目类别:
    Grant for R&D
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
  • 批准号:
    10772887
  • 财政年份:
    2023
  • 资助金额:
    $ 11.44万
  • 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
  • 批准号:
    10766947
  • 财政年份:
    2023
  • 资助金额:
    $ 11.44万
  • 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
  • 批准号:
    10594350
  • 财政年份:
    2023
  • 资助金额:
    $ 11.44万
  • 项目类别:
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
  • 批准号:
    10821172
  • 财政年份:
    2023
  • 资助金额:
    $ 11.44万
  • 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
  • 批准号:
    10748465
  • 财政年份:
    2023
  • 资助金额:
    $ 11.44万
  • 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
  • 批准号:
    10591441
  • 财政年份:
    2023
  • 资助金额:
    $ 11.44万
  • 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
  • 批准号:
    491109
  • 财政年份:
    2023
  • 资助金额:
    $ 11.44万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了