Live-Cell Chromatin Imaging and Biology: Application to Extrachromosomal DNA
活细胞染色质成像和生物学:在染色体外 DNA 中的应用
基本信息
- 批准号:10685017
- 负责人:
- 金额:$ 144.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAutomobile DrivingBiochemicalBiologyCellsChromatinChromatin StructureChromosomesDiseaseDisease ManagementDissectionDrug resistanceEnsureFoundationsGene ExpressionGene Expression RegulationGeneticGenetic TranscriptionGenomeGenome engineeringGenomic approachGenomicsHealthHealth PromotionHumanImageLabelMalignant NeoplasmsMeasurementMethodsMicroscopyMitosisModernizationMolecularMonitorNamesNational Cancer InstituteOncogenesOpticsOrganOrganismOutcomePatientsPhysiologicalProcessRegulationRegulatory ElementResolutionTimeTissuesVisualizationcancer genomecancer typedesignextrachromosomal DNAgenetic approachhigh rewardhigh riskimprovedinnovationmolecular dynamicsnovel strategiespopulation basedprogramssegregationspatiotemporalstemtechnology developmenttooltumor heterogeneity
项目摘要
PROJECT SUMMARY
Genome regulation is the prime mechanism that governs the precise spatiotemporal gene expression program
that, in turn, establishes and maintains the cellular states in tissues and organs in multicellular organisms. In
humans, genomic changes that alter this regulation can cause a wide range of diseases such as cancer.
Demystifying genome regulation has become a central task of modern biology in the post-genomic era and is
the foundation for effective disease management and promotion of health. Homeostatic genome regulation
ensures precise spatiotemporal chromosomal gene regulation in properly insulated chromatin structures, in the
cis-configuration (same chromosome), and through faithful symmetric segregation during mitosis. In stark
contrast, these rules are broken in human cancers particularly in the form of extrachromosomal DNA (ecDNA)
that enables insulation crossover, trans regulation, and asymmetric inheritance. Named as a 2021 Cancer Grand
Challenge by the National Cancer Institute, megabase-sized circular ecDNA typically contains common
oncogenes and regulatory elements present in major human cancer types, driving massive oncogene
amplification and expression, enabling intra-tumoral heterogeneity, and conferring drug resistance and poor
patient survival. The fundamental molecular mechanisms governing ecDNA expression, interaction, and
propagation are largely unknown. Although powerful biochemical, genetic, and genomic approaches have laid
the conceptual framework of modern understanding of genome regulation, the largely population-based, time-
averaged, and sometimes out-of-context measurements are insufficient to fully describe the spatially
compartmentalized, temporally dynamic, and physiologically relevant higher-order interactions in single live cells.
The fundamental challenges stem from lack of chromatin tools to label the intrinsically heterogeneous chromatin,
limited spatiotemporal resolution to monitor the highly concentrated and dynamic molecular transactions, and
the paucity of quantitative and rigorous methods to extract fundamental physical rules underlying genome
regulatory processes. In this project, we plan to overcome these primitive challenges by initiating a radically
distinctive technological development of robust, efficient, and multiplexable chromatin labeling strategies for live-
cell chromatin biology, which will allow us to apply them to address the fundamental regulation of ecDNA in the
cancer genome. We will integrate advanced imaging, cutting-edge microscopy, modern synthetic genome
engineering, and optical/genetic perturbation to systematically study the basic mechanisms by which ecDNA
orchestrates massive oncogene transcription, extensive chromosomal remodeling, and asymmetric segregation
hitherto intractable by conventional biochemical, genetic, or genomic methods. Positive outcome of these cutting-
edge approaches and high-risk high-reward questions embedded in our proposal will have a transformative
impact on mechanistic dissection of cancer genome regulation and may help us to uncover an Achilles' heel with
which to target ecDNA-driven cancer, thereby affording wide-ranging positive influence on human health.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liangqi Xie其他文献
Liangqi Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 144.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 144.9万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 144.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 144.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)