Defining the Translocation Mechanisms of SARS-CoV-2 nsp13 Helicase to Aid in Antiviral Development
定义 SARS-CoV-2 nsp13 解旋酶的易位机制以帮助抗病毒药物开发
基本信息
- 批准号:10687175
- 负责人:
- 金额:$ 43.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVATP HydrolysisATP phosphohydrolaseAddressAntiviral AgentsArginineAttenuated VaccinesBehaviorBindingBiochemicalBiological AssayCOVID-19CatalysisCessation of lifeCharacteristicsCommunicationCoupledCouplesCrystallographyDataDengueDevelopmentEconomicsElementsEnzyme KineticsEnzymesGoalsHealthHydrolysisIn VitroIndividualKnowledgeLengthLife Cycle StagesLigand BindingLigandsMapsMiddle East Respiratory SyndromeModelingMolecularMolecular ConformationMotionMutagenesisMutationNonstructural ProteinNucleotidesPathway AnalysisPersonal SatisfactionPersonsPhenotypePlayProcessProteinsProtocols documentationQuantum MechanicsRNARNA BindingRNA HelicaseRNA VirusesRNA-Protein InteractionReactionResearch PersonnelResistanceSARS coronavirusSite-Directed MutagenesisStructureStructure-Activity RelationshipSubgroupTechniquesTemperatureTestingVaccinesViralViral ProteinsVirusVirus ReplicationWorkX-Ray Crystallographyanalogantiviral drug developmentcombatenzyme mechanismenzyme structureexperienceexperimental studyhelicaseholistic approachimprovedin silicoinhibitorinsightmolecular dynamicsmolecular scalemulti-scale modelingmutantnovelrational designresistance mutationresistant strainresponsesimulationskillstargeted treatmenttherapeutic developmenttripolyphosphatevaccine developmentviral RNA
项目摘要
Project Summary
SARS-CoV-2, the causative agent of COVID-19, has infected more than 103M people worldwide (February
2021) with more than 2.25M deaths, and represents a dire threat to the health and economic well-being of the
entire world. Although vaccines seem to be effective against SARS-CoV-2, recent information regarding
potential vaccine resistant strains highlights the importance of alternative strategies to combat this virus. The
development of antiviral therapeutics on important mutation resistant viral proteins such as nsp13 is one such
strategy. Improved knowledge of the molecular mechanisms utilized by nsp13 are necessary to rationally
develop inhibitors. This project will address this deficiency utilizing an integrated multiscale modeling, protein
crystallography, and biochemical approach to define how SARS-CoV-2 nsp13 helicase binds RNA and ATP
substrates, transduces energy during ATP binding and hydrolysis, and changes conformation during ligand
binding and catalysis. We propose the following: 1) Identification of molecular-level components of the RNA-
binding and translocation mechanisms of nsp13. Preliminary all-atom molecular dynamics (aaMD) simulations
of SARS-CoV-2 nsp13 have identified key protein-RNA interactions that will inform initial mutagenesis studies.
Further simulation and protein crystallography will inform on the ATP-dependent protein-RNA interactions
observed in the RNA cleft. Biochemical experiments will be performed to test the structure-function
hypotheses generated by the structural-based approaches. 2) Identification of molecular-level features of the
binding, hydrolysis and product release of ATP by nsp13. We have performed aaMD simulations of the SARS-
CoV-2 nsp13 in all relevant substrate states. Soaked-in ATP and non-hydrolysable analogue protein
crystallography will be performed to test these initial models. Subsequent quantum mechanical calculations
will identify key components of the ATP hydrolysis reaction. Site-directed mutagenesis and well-established
enzyme kinetics assays will be used to test effects predicted by these simulations. 3) Identification of allosteric
networks in SARS-CoV-2 nsp13 that transduce energy from ATP binding and hydrolysis to perform RNA
translocation. Utilizing network analyses of aaMD simulations, Motif V has been identified as a key allosteric
contributor. Biochemical studies will be performed to verify that Motif V is necessary for nsp13 helicase
function. Further work will be done to identify allosteric networks between additional components of the ATP
pocket and RNA cleft identified in Aims 2 and 3. This work will produce unprecedented molecular-level insight
into the translocation mechanism of SARS-CoV-2 nsp13 helicases. Key components of this mechanism
represent new targets for antiviral development.
项目摘要
新冠肺炎的病原体SARS-CoV-2已在全球感染超过1.03亿人(2月
2021年),死亡人数超过225万人,对美国人的健康和经济福祉构成了可怕的威胁
整个世界。尽管疫苗似乎对SARS-CoV-2有效,但最近关于
潜在的疫苗耐药株突显了抗击这种病毒的替代战略的重要性。这个
针对重要的抗突变病毒蛋白如nsp13的抗病毒治疗的发展就是其中之一。
策略。提高对nsp13利用的分子机制的了解对于合理地
开发抑制剂。该项目将利用集成的多尺度模型蛋白质来解决这一缺陷
结晶学和生化方法确定SARS-CoV-2 nsp13解旋酶如何与RNA和ATP结合
底物,在ATP结合和水解过程中传递能量,并在配基过程中改变构象
结合和催化。我们提出了以下建议:1)鉴定RNA的分子水平成分--
Nsp13的结合和转位机制。初步全原子分子动力学(AAMD)模拟
SARS-CoV-2的NSP13已经确定了关键的蛋白质-RNA相互作用,这些相互作用将为最初的突变研究提供信息。
进一步的模拟和蛋白质结晶学将有助于了解依赖于ATP的蛋白质-RNA相互作用
在RNA裂隙中观察到。将进行生化实验以测试结构-功能
基于结构的方法产生的假设。2)分子水平特征的鉴定
Nsp13对三磷酸腺苷的结合、水解和产物释放。我们已经对SARS进行了AAMD模拟-
CoV-2 nsp13在所有相关底物状态。浸泡的三磷酸腺苷和非水解性类似蛋白
将进行结晶学测试这些初始模型。随后的量子力学计算
将确定ATP水解反应的关键成分。定点突变和成熟的
酶动力学分析将被用来检验这些模拟预测的效果。3)变构化合物的鉴定
SARS-CoV-2 nsp13中的网络,从ATP结合和水解中转换能量来执行RNA
易位。利用AAMD模拟的网络分析,Motif V被确定为关键的变构
贡献者。将进行生化研究,以证实基序V是nsp13解旋酶所必需的
功能。将做进一步的工作来确定ATP的其他组分之间的变构网络
在AIMS 2和3中发现了Pocket和RNA裂解。这项工作将产生前所未有的分子水平的洞察力
探讨SARS-CoV-2 nsp13解旋酶的易位机制。这一机制的关键部件
代表了抗病毒开发的新目标。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences
- DOI:10.1007/s11244-021-01521-1
- 发表时间:2021-11-09
- 期刊:
- 影响因子:3.6
- 作者:Klem,Heidi;McCullagh,Martin;Paton,Robert S.
- 通讯作者:Paton,Robert S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin McCullagh其他文献
Martin McCullagh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin McCullagh', 18)}}的其他基金
Defining the Translocation Mechanisms of SARS-CoV-2 nsp13 Helicase to Aid in Antiviral Development
定义 SARS-CoV-2 nsp13 解旋酶的易位机制以帮助抗病毒药物开发
- 批准号:
10346024 - 财政年份:2021
- 资助金额:
$ 43.9万 - 项目类别:
Defining the Translocation Mechanisms of SARS-CoV-2 nsp13 Helicase to Aid in Antiviral Development
定义 SARS-CoV-2 nsp13 解旋酶的易位机制以帮助抗病毒药物开发
- 批准号:
10490903 - 财政年份:2021
- 资助金额:
$ 43.9万 - 项目类别:
Simulating Biomolecular Machines: ATP Powered DNA Translocation in Helicases
模拟生物分子机器:解旋酶中 ATP 驱动的 DNA 易位
- 批准号:
8316571 - 财政年份:2012
- 资助金额:
$ 43.9万 - 项目类别:
Simulating Biomolecular Machines: ATP Powered DNA Translocation in Helicases
模拟生物分子机器:解旋酶中 ATP 驱动的 DNA 易位
- 批准号:
8468936 - 财政年份:2012
- 资助金额:
$ 43.9万 - 项目类别:
Simulating Biomolecular Machines: ATP Powered DNA Translocation in Helicases
模拟生物分子机器:解旋酶中 ATP 驱动的 DNA 易位
- 批准号:
8636487 - 财政年份:2012
- 资助金额:
$ 43.9万 - 项目类别:
相似海外基金
Exploring the effect of ATP hydrolysis on condensin ability to compact chromosomes
探索 ATP 水解对浓缩蛋白压缩染色体能力的影响
- 批准号:
364619 - 财政年份:2017
- 资助金额:
$ 43.9万 - 项目类别:
The Mechanism and Regulation of ATP Hydrolysis in a Viral Genome Packaging Motor
病毒基因组包装马达中 ATP 水解的机制和调控
- 批准号:
9327813 - 财政年份:2017
- 资助金额:
$ 43.9万 - 项目类别:
Analysis of coupling between substrate binding and ATP hydrolysis in canonical homo- and heterodimeric amino acid ABC import systems
经典同二聚体和异二聚体氨基酸 ABC 输入系统中底物结合与 ATP 水解之间的耦合分析
- 批准号:
315832426 - 财政年份:2016
- 资助金额:
$ 43.9万 - 项目类别:
Research Grants
Mechanisms of actin polymerization, ATP hydrolysis, and filament severing revealed by F-form crystal structures
F 型晶体结构揭示肌动蛋白聚合、ATP 水解和丝断裂的机制
- 批准号:
16K14708 - 财政年份:2016
- 资助金额:
$ 43.9万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Identification of key residues for control of the coupling between ATP hydrolysis and substrate transport of an ABC transporter
鉴定控制 ABC 转运蛋白 ATP 水解和底物转运之间耦合的关键残基
- 批准号:
26840048 - 财政年份:2014
- 资助金额:
$ 43.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Multisubunit viral ATPases that couple ATP-hydrolysis to genome translocation
将 ATP 水解与基因组易位耦合的多亚基病毒 ATP 酶
- 批准号:
8238803 - 财政年份:2012
- 资助金额:
$ 43.9万 - 项目类别:
Multisubunit viral ATPases that couple ATP-hydrolysis to genome translocation
将 ATP 水解与基因组易位耦合的多亚基病毒 ATP 酶
- 批准号:
9754155 - 财政年份:2012
- 资助金额:
$ 43.9万 - 项目类别:
Multisubunit viral ATPases that couple ATP-hydrolysis to genome translocation
将 ATP 水解与基因组易位耦合的多亚基病毒 ATP 酶
- 批准号:
8518398 - 财政年份:2012
- 资助金额:
$ 43.9万 - 项目类别:
Multisubunit viral ATPases that couple ATP-hydrolysis to genome translocation
将 ATP 水解与基因组易位耦合的多亚基病毒 ATP 酶
- 批准号:
8711498 - 财政年份:2012
- 资助金额:
$ 43.9万 - 项目类别:
Multisubunit viral ATPases that couple ATP-hydrolysis to genome translocation
将 ATP 水解与基因组易位耦合的多亚基病毒 ATP 酶
- 批准号:
8927018 - 财政年份:2012
- 资助金额:
$ 43.9万 - 项目类别: