Toward functional molecular neuroimaging using vasoactive probes in human subjects
在人类受试者中使用血管活性探针进行功能性分子神经成像
基本信息
- 批准号:10687097
- 负责人:
- 金额:$ 58.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-09 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAnimalsAntibodiesArchitectureAutopsyBehavioralBiotinBlood - brain barrier anatomyBrainBypassCallithrixCarrier ProteinsChemicalsClinicalCognitionContrast MediaCultured CellsDataDetectionDiffuseDiseaseDopamineDrug usageEngineeringEnzymesFunctional Magnetic Resonance ImagingGlutamatesGoalsHealthHumanInjectionsLaboratoriesMagnetic Resonance ImagingMagnetismMapsMeasurementMediatingMethodsModelingMolecularMolecular ProbesMonitorMonkeysNeurobiologyNeurosciencesNeurotransmittersOpticsOutcomePerceptionPeripheralPermeabilityPersonsPositron-Emission TomographyPrimatesProcessRadioactiveReagentResolutionRodentRoleSignal TransductionSourceSpecificityStimulusTechnologyTestingTimeValidationVariantWorkblood oxygen level dependentblood-brain barrier permeabilizationdesigndesign and constructionexperienceexperimental studyhemodynamicshuman subjectimaging agentimaging modalityimaging probein vitro testingin vivo imagingintravenous injectionmolecular scalemonoamineneural circuitneurochemistryneuroimagingneurophysiologynon-invasive imagingnonhuman primatenoveloverexpressionreceptorresearch clinical testingresponsesensorsmall moleculespatiotemporaltranscytosistranslation to humansultrasound
项目摘要
We propose to develop a probe technology for monitoring human brain function with molecular precision;
in conjunction with magnetic resonance imaging (MRI) or other imaging modalities, the probes will provide a
combination of sensitivity and resolution that could permit unprecedented noninvasive studies of dynamic neu-
rophysiological processes in people. Our strategy is based on a fundamentally new type of chemical imaging
probe designed to produce neuroimaging readouts by purposefully manipulating endogenous hemodynamic
contrast in the brain—repurposing the blood oxygen level dependent (BOLD) effect that underlies conventional
functional MRI (fMRI). This new “vasoprobe” concept offers three key advantages: First, by providing time-de-
pendent sensitivity to dilute molecular species such as neurotransmitters, the probes can enable well-defined
neurobiological phenomena to be mapped dynamically across the entire brain, dramatically surpassing existing
nonspecific fMRI approaches. Second, because of the endogenous contrast source they influence, the probes
are detectable on a variety of spatiotemporal scales by noninvasive imaging modalities complementary to fMRI,
such as diffuse optical or ultrasound-based methods. Third, by circumventing limitations of established optical,
magnetic, and radioactive probe designs, vasoprobes combine exquisite sensitivity approaching that of positron
emission tomography (PET) with the resolution and versatility of MRI. In this project, we will build on our recent
proof-of-concept work with vasoprobes to establish noninvasive brain-wide delivery strategies and to develop
robust neurochemical sensors that function in primates. The technology we establish will address multiple goals
in basic and applied neuroscience, and we expect it to yield molecular probes that will be appropriate for clinical
evaluation in human subjects by the end of the project period.
In Aim 1, we will create vasoprobe variants that can be delivered to the brain via intravenous injection and
spontaneous permeation through the blood-brain barrier (BBB). We will form conjugates of vasoprobe-based
sensors with “brain shuttle” antibodies that have previously been shown to enable brain import via receptor-
mediated transcytosis. Demonstration of brain-permeable vasoprobes will establish a clinically viable path for
facile, noninvasive applications of vasoprobes throughout the brain. In Aim 2, we will optimize vasoprobes to
sense the key neurotransmitters dopamine and glutamate; we will then apply them on a brain-wide scale for
molecular-level fMRI in rodent brains. These experiments, in conjunction with outcome of Aim 1, will set the
stage for applications of neurotransmitter-sensitive vasoprobes and related sensors in primate brains. Accord-
ingly, in Aim 3, we will adapt neurotransmitter-sensitive vasoprobe technology for functional molecular neuroim-
aging in marmosets, a tractable primate species with which we have previous experience. Successful completion
of validation experiments in marmosets will therefore establish groundbreaking imaging agents suitable for trans-
lation to humans, as well as for adaptation to many further neurophysiological targets.
我们建议开发一种探针技术,以分子精度监测人脑功能;
结合磁共振成像(MRI)或其他成像方式,探头将提供
灵敏度和分辨率的结合,可以允许前所未有的动态神经元的非侵入性研究,
人类的生理过程。我们的战略是基于一种全新的化学成像技术
设计用于通过有目的地操纵内源性血流动力学产生神经成像读数的探头
对比脑再利用的血氧水平依赖(BOLD)效应,
功能性磁共振成像(fMRI)。这种新的“血管探针”概念提供了三个关键优点:首先,通过提供时间-时间
对于稀释的分子种类如神经递质的悬垂敏感性,探针可以使明确的
神经生物学现象在整个大脑中动态映射,大大超过现有的
非特异性fMRI方法。第二,由于它们影响的内源性对比源,
可以通过与功能磁共振成像互补的非侵入性成像方式在各种时空尺度上检测,
例如漫射光学或基于超声方法。第三,通过规避现有的光学,
磁和放射性探针设计,血管探针联合收割机结合了接近正电子探针的灵敏度
发射断层扫描(PET)具有MRI的分辨率和多功能性。在这个项目中,我们将建立在我们最近的
使用血管探针进行概念验证,以建立无创性全脑递送策略,并开发
在灵长类动物中起作用的强大的神经化学传感器。我们建立的技术将解决多个目标
在基础和应用神经科学中,我们希望它能产生适用于临床的分子探针,
在项目期结束前对人类受试者进行评估。
在目标1中,我们将创建血管探针变体,可以通过静脉注射输送到大脑,
通过血脑屏障(BBB)的自发渗透。我们将形成基于血管探针的
具有“脑穿梭”抗体的传感器,先前已显示能够通过受体-
介导的转胞吞作用。脑渗透性血管探针的证明将为临床建立一条可行的途径,
血管探针在整个大脑中的简便、非侵入性应用。在目标2中,我们将优化血管探头,
感觉到关键的神经递质多巴胺和谷氨酸;然后我们将在全脑范围内应用它们,
分子水平的功能磁共振成像。这些实验,结合目标1的结果,将确定
神经递质敏感的血管探针和相关传感器在灵长类动物大脑中的应用阶段。雅阁-
因此,在目标3中,我们将采用神经递质敏感的血管探针技术用于功能性分子神经抑制,
我们以前有过这种经验的灵长类动物--绒猴。成功完成
因此,在绒猴中进行的验证实验将建立适用于反式-
对人类的作用,以及对许多其他神经生理学靶点的适应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Jasanoff其他文献
Alan Jasanoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Jasanoff', 18)}}的其他基金
Analysis of integrated brain functions using hemogenetic imaging
使用血遗传学成像分析大脑的综合功能
- 批准号:
10365025 - 财政年份:2022
- 资助金额:
$ 58.61万 - 项目类别:
Analysis of Integrated Brain Functions Using Hemogenetic Imaging
使用血遗传学成像分析大脑的综合功能
- 批准号:
10553193 - 财政年份:2022
- 资助金额:
$ 58.61万 - 项目类别:
Multimodal probes for multiscale calcium imaging
用于多尺度钙成像的多模态探针
- 批准号:
10154098 - 财政年份:2021
- 资助金额:
$ 58.61万 - 项目类别:
Hemogenetic imaging technology for circuit-specific analysis of primate brain function
用于灵长类大脑功能电路特异性分析的血遗传学成像技术
- 批准号:
10652546 - 财政年份:2021
- 资助金额:
$ 58.61万 - 项目类别:
Hemogenetic imaging technology for circuit-specific analysis of primate brain function
用于灵长类大脑功能电路特异性分析的血遗传学成像技术
- 批准号:
10271639 - 财政年份:2021
- 资助金额:
$ 58.61万 - 项目类别:
Hemogenetic imaging technology for circuit-specific analysis of primate brain function
用于灵长类大脑功能电路特异性分析的血遗传学成像技术
- 批准号:
10478067 - 财政年份:2021
- 资助金额:
$ 58.61万 - 项目类别:
Nanosensors for sensitive brain-wide neurochemical imaging
用于敏感全脑神经化学成像的纳米传感器
- 批准号:
10154138 - 财政年份:2021
- 资助金额:
$ 58.61万 - 项目类别:
Toward functional molecular neuroimaging using vasoactive probes in human subjects
在人类受试者中使用血管活性探针进行功能性分子神经成像
- 批准号:
10253338 - 财政年份:2021
- 资助金额:
$ 58.61万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 58.61万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 58.61万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 58.61万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 58.61万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 58.61万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 58.61万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 58.61万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 58.61万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 58.61万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 58.61万 - 项目类别:
Training Grant