Osteomacs and megakaryocytes interact to regulate hematopoietic stem cell function
骨巨细胞和巨核细胞相互作用调节造血干细胞功能
基本信息
- 批准号:10686056
- 负责人:
- 金额:$ 31.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalALCAM geneAdultAgeBlood CellsBlood PlateletsBlood coagulationBone MarrowCalvariaCell MaintenanceCellsClinical TreatmentCompetenceComplexCritical PathwaysCytometryDataDevelopmentElementsEmbryoEndosteumEndothelial CellsEngraftmentErythropoiesisExtracellular Matrix ProteinsFunding OpportunitiesGenetic ModelsGenomicsGoalsHealthHematopoiesisHematopoieticHematopoietic Stem Cell MobilizationHematopoietic stem cellsIn VitroIonizing radiationMacrophageMaintenanceMalignant NeoplasmsMarrowMediatingMegakaryocytesModelingMolecularMusNational Institute of Diabetes and Digestive and Kidney DiseasesNeonatalOsteoblastsPF4 GenePTPRC genePathway interactionsPhenotypePopulationPropertyProteomicsPublishingRadiationRegulationResearchRoleSignal TransductionStructureSurfaceTestingTimeTissuesTransforming Growth FactorsTransplantationWorkcell preparationcell typeconditioninghematopoietic stem cell differentiationhematopoietic stem cell nichehematopoietic stem cell self-renewalin vivolong bonemature animalosteoblast differentiationosteoblast proliferationprogenitorprogramsrecruitspatial relationshipstem cell engraftmentstem cell functionstem cellstranscriptometransplant model
项目摘要
The hematopoietic niche is a complex structure of multiple cell types and extra-cellular matrix proteins. In a
well-orchestrated manner, elements of the niche interact together and with hematopoietic stem cells (HSC) to
maintain HSC selfrenewal potential. HSC maintenance within the bone marrow (BM) is associated with the
health of cellular elements of the niche including endothelial cells, osteoblasts, and other hematopoietic cells
such as megakaryocytes. Our published work demonstrates that immature osteoblasts mediate a robust in
vitro hematopoiesis enhancing activity and that megakaryocytes enhance osteoblast proliferation and inhibit
their differentiation. Megakaryocytes have been implicated in both regulating HSC function and maintaining the
competence of the niche after radiation through specialized interactions with osteoblasts that augment their
enhancement of HSC function. Recently, a unique population of CD45+F4/80+ macrophages known as
osteomacs (OM) was recognized in the niche. We detected these cells in neonatal calvarial cell (NCC)
preparations and recently published that OM are critical for the osteoblast-mediated hematopoiesis enhancing
activity. Megakaryocytes stimulate NCC-derived OM as well as OM from adult mice and significantly enhance
their in vitro expansion and function. Interestingly, extensive flow cytometric characterization of OM revealed
that OM are phenotypically distinct from BM-derived macrophages and that the later cannot functionally
substitute for OM to drive the osteoblast-mediated hematopoiesis enhancing activity. Our studies further
suggest that OM are important for the competence of the hematopoietic niche. We hypothesize that
maintenance of HSC function and the competence of the hematopoietic niche are dependent on
cellular interactions and molecular cross talk between osteoblast, OM and megakaryocytes. Our
hypothesis will be examined by investigating the following three aims: 1) Investigate if OM are transplantable
and whether loss of megakaryocytes disrupts the emergence of OM and negatively impacts HSC function and
niche competence. 2) Identify differences between OM and BM-derived macrophages that make OM a unique
niche component and define, at the molecular level, how OM and megakaryocytes promote the maintenance of
HSC function. 3) Define the spatial relationship between HSC, osteoblasts, OM, and megakaryocytes in the
intact niche of young and old mice and in the perturbed microenvironment following marrow conditioning. The
significance of these studies is that they will define and explain how the interplay between four cellular
components of the BM regulate HSC function and the competence of the niche. The novelty derives from the
potential of these studies to establish, for the first time, a unique group of cells, namely OM, as primary targets
of the megakaryocyte-mediated HSC promoting activity in the niche. Our premise that OM are central to HSC
and niche functional properties is both paradigm shifting in our understanding of the close interactions between
HSC and the niche and is also an unexplored pathway critical to the maintenance of hematopoiesis.
造血生态位是由多种细胞类型和细胞外基质蛋白组成的复杂结构。在一个
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa A Kacena其他文献
Melissa A Kacena的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melissa A Kacena', 18)}}的其他基金
"Novel therapeutic approaches to improve fracture healing while reducing pain behavior"
“改善骨折愈合同时减少疼痛行为的新治疗方法”
- 批准号:
10609035 - 财政年份:2022
- 资助金额:
$ 31.7万 - 项目类别:
"Novel therapeutic approaches to improve fracture healing while reducing pain behavior"
“改善骨折愈合同时减少疼痛行为的新治疗方法”
- 批准号:
10426446 - 财政年份:2022
- 资助金额:
$ 31.7万 - 项目类别:
Osteomacs and megakaryocytes interact to regulate hematopoietic stem cell function
骨巨细胞和巨核细胞相互作用调节造血干细胞功能
- 批准号:
10212373 - 财政年份:2019
- 资助金额:
$ 31.7万 - 项目类别:
Angiogenic Therapy: Novel Approaches to Enhance Bone Regeneration in Aging - LOAD
血管生成疗法:增强衰老过程中骨再生的新方法 - LOAD
- 批准号:
10711847 - 财政年份:2019
- 资助金额:
$ 31.7万 - 项目类别:
Osteomacs and megakaryocytes interact to regulate hematopoietic stem cell function
骨巨细胞和巨核细胞相互作用调节造血干细胞功能
- 批准号:
9764740 - 财政年份:2019
- 资助金额:
$ 31.7万 - 项目类别:
Angiogenic Therapy: Novel Approaches to Enhance Bone Regeneration in Aging - AD/ADRD
血管生成疗法:增强衰老过程中骨再生的新方法 - AD/ADRD
- 批准号:
10711880 - 财政年份:2019
- 资助金额:
$ 31.7万 - 项目类别:
ShEEP Request for a Kubtec XPERT 80 Shielded Cabinet X-ray System
ShEEP 请求 Kubtec XPERT 80 屏蔽柜 X 射线系统
- 批准号:
9796215 - 财政年份:2019
- 资助金额:
$ 31.7万 - 项目类别:
Angiogenic Therapy: Novel Approaches to Enhance Bone Regeneration in Aging
血管生成疗法:增强衰老过程中骨再生的新方法
- 批准号:
9757972 - 财政年份:2019
- 资助金额:
$ 31.7万 - 项目类别:
Angiogenic Therapy: Novel Approaches to Enhance Bone Regeneration in Aging
血管生成疗法:增强衰老过程中骨再生的新方法
- 批准号:
10356802 - 财政年份:2019
- 资助金额:
$ 31.7万 - 项目类别:














{{item.name}}会员




