Functional maturation of neural circuits for biological motion perception and social engagement
生物运动感知和社会参与的神经回路的功能成熟
基本信息
- 批准号:10687450
- 负责人:
- 金额:$ 137.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAnimalsAttentionAugmented RealityBehaviorBehavioralBiologicalBiological ModelsBrainBrain regionCalciumCerebrumChildCuesDataDevelopmentFishesFunctional ImagingFunctional disorderGenesGeneticGenetic ModelsHumanImageImpairmentKnock-outMammalsMeasuresMediatingMotionMotion PerceptionOpticsPathologicPopulationPopulation DynamicsPositioning AttributePosturePrimatesResearchResolutionSchoolsSocial DevelopmentStimulusSymptomsVertebratesVisionVisual PerceptionVisual attentionVisual impairmentWorkautism spectrum disorderautistic childrenbiological developmentbody languageexperiencegazein vivoinfancyinterdisciplinary approachmemberneuralneural circuitnovelresponsesocialsocial engagementsupport networkvirtual realityvisual processing
项目摘要
Project Summary/Abstract
Social animals can obtain information by looking at one another – paying attention to the “body language” of
group members and adjusting their actions accordingly. This is evident in the behavior of vertebrates such as
primates and some species of schooling fish, which orient their position, posture, and heading direction
according to the position, posture, and gaze of their social partners. The ability to attend to the biological
motion cues of others is also a hallmark of human social development, and emerges early in infancy for
typically developing children. In contrast, children with Autism Spectrum Disorder (ASD) display pronounced
deficits in their ability to attend to biological motion cues – including body posture and gaze direction – a
critical social impairment that can be an early sign of ASD in young children. Despite its importance, the
neural circuits mediating the functional and dysfunctional processing of biological motion information are
poorly understood, in part due to the challenges of studying distributed subcortical circuits across
development in mammals. Here I propose a research strategy to study the development of social brain
circuits for biological motion perception in schooling fish, taking advantage of highly- conserved subcortical
networks that support innate visual processing, orienting behavior, and social engagement in vertebrates. My
lab will study the development of the social brain in the micro glassfish (Danionella cerebrum), a vertebrate
model system with the unique features of genetic amenability, small size, and life-long optical transparency,
enabling brain-wide in vivo cellular-resolution calcium imaging in adulthood. Our preliminary data indicate that
adult Danionella school based on vision alone, which allows for precise experimental control over naturalistic
social stimuli in the lab. By leveraging these unique attributes, here we propose to investigate the brain-wide
networks that underlie the development of biological motion perception – and its dysfunction in genetic
models of ASD – using a novel combination of multi-animal posture tracking across the development of
collective behavior, Augmented and Virtual Reality (AR/VR) tasks, brain-wide cellular-level functional
imaging, and Crispr-Cas knockout of ASD-associated genes. My lab will apply this multidisciplinary approach
to identify the developmental progression of biological motion processing and coordinated group behavior,
the multi-regional neural populations that encode the visual perception of conspecific actions and drive
appropriate orienting responses, and the dysfunction of developing neural circuits and group behavior in
multiple genetic models of ASD. By establishing this model system for social maturation and focusing on
neural circuits that are conserved across vertebrates, our work will facilitate the rapid discovery of brain-wide
functional motifs related to typical and pathological development in ASD.
项目概要/摘要
社会性动物可以通过互相注视来获取信息——注意对方的“肢体语言”
小组成员并相应地调整他们的行动。这在脊椎动物的行为中很明显,例如
灵长类动物和某些鱼群,它们可以确定自己的位置、姿势和前进方向
根据他们的社交伙伴的位置、姿势和目光。关注生物的能力
他人的动作线索也是人类社会发展的标志,并且在婴儿期早期就出现了
通常是发育中的儿童。相比之下,患有自闭症谱系障碍 (ASD) 的儿童表现出明显的
他们关注生物运动线索的能力存在缺陷——包括身体姿势和注视方向——
严重的社交障碍可能是幼儿自闭症谱系障碍的早期征兆。尽管其重要性,
介导生物运动信息的功能性和功能失调处理的神经回路是
人们对此知之甚少,部分原因是研究分布式皮层下电路面临的挑战
哺乳动物的发育。在这里我提出一个研究社交大脑发育的研究策略
利用高度保守的皮层下神经元,研究鱼群生物运动感知的电路
支持脊椎动物先天视觉处理、定向行为和社会参与的网络。我的
实验室将研究脊椎动物微型玻璃鱼(Danionella cerebrum)的社交大脑的发育
模型系统具有遗传适应性、小尺寸和终生光学透明度的独特特征,
实现成年期全脑体内细胞分辨率钙成像。我们的初步数据表明
仅基于视觉的成人 Danionella 学校,可以对自然主义进行精确的实验控制
实验室中的社交刺激。通过利用这些独特的属性,我们建议研究全脑
生物运动感知发展背后的网络及其遗传功能障碍
ASD 模型——在整个发展过程中使用多动物姿势跟踪的新颖组合
集体行为、增强和虚拟现实 (AR/VR) 任务、全脑细胞水平功能
成像,以及 ASD 相关基因的 Crispr-Cas 敲除。我的实验室将应用这种多学科方法
确定生物运动处理和协调群体行为的发展进程,
编码同种行为和驱动力的视觉感知的多区域神经群体
适当的定向反应,以及发育中的神经回路和群体行为的功能障碍
ASD 的多种遗传模型。通过建立这个社会成熟模型系统并关注
脊椎动物中保守的神经回路,我们的工作将促进全脑的快速发现
与 ASD 的典型和病理发展相关的功能基序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Lovett-Barron其他文献
Matthew Lovett-Barron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Lovett-Barron', 18)}}的其他基金
Discovery and characterization of brain-wide neuromodulatory circuits regulating arousal
调节唤醒的全脑神经调节回路的发现和表征
- 批准号:
10405479 - 财政年份:2020
- 资助金额:
$ 137.87万 - 项目类别:
Discovery and characterization of brain-wide neuromodulatory circuits regulating arousal
调节唤醒的全脑神经调节回路的发现和表征
- 批准号:
10164909 - 财政年份:2020
- 资助金额:
$ 137.87万 - 项目类别:
Discovery and characterization of brain-wide neuromodulatory circuits regulating arousal
调节唤醒的全脑神经调节回路的发现和表征
- 批准号:
10210247 - 财政年份:2020
- 资助金额:
$ 137.87万 - 项目类别:
Discovery and characterization of brain-wide neuromodulatory circuits regulating arousal
调节唤醒的全脑神经调节回路的发现和表征
- 批准号:
9452485 - 财政年份:2017
- 资助金额:
$ 137.87万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 137.87万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 137.87万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 137.87万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 137.87万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 137.87万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 137.87万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 137.87万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 137.87万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 137.87万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 137.87万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




