Multi-scale feedbacks for robust organ development

多尺度反馈促进器官的健全发育

基本信息

  • 批准号:
    10687672
  • 负责人:
  • 金额:
    $ 131.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY One of the hallmarks of successful embryonic development is the reproducible and robust formation of organs with the right shape and size. Failures in organ morphogenesis can result in developmental disorders, lifelong birth defects, and, in some cases, embryonic lethality and miscarriage. To address how complex forms reproducibly arise from simple tissues, research studies across species have provided a simple mechanistic framework, where genetic-information patterns cellular mechanics to drive tissue morphogenesis. However, this simple framework, where information flows hierarchically from genes to cells to tissues, fails to account for: (i) biological noise causing variations in tissue patterns, (ii) multi-scale feedback interactions, and (iii) guiding roles of tissue geometry. To address these outstanding challenges in organ morphogenesis, we will utilize an exemplary organ common to all vertebrate organisms— the semicircular canals of the inner ear, in an accessible genetic model system— the zebrafish. The three canals are mutually orthogonal, and this precise angular architecture is required for detecting head rotations and maintaining balance. The intricate morphology of the canals arises from the topological remodeling of a simple embryonic tissue, making it one of the most geometrically complex and accurate morphogenic processes amenable to study. To investigate how canal morphogenesis achieves robustness, we will establish a new experimental paradigm by leveraging high-resolution microscopy, single-cell transcriptomic data, statistical analysis, genetic, physical, and biophysical perturbations, and predictive physical modelling. This paradigm will be deployed to: (i) measure variations in tissue patterns and morphologies; (ii) add variations to tissue patterns for dissecting out the respective contributions of genetically-encoded instructions versus other regulatory mechanisms, and (iii) systematically investigate the physical constraints from tissue geometry and feedbacks through mechano-transduction in “canalizing” variations during development. These innovative, distinct yet complementary approaches will deliver a new, integrative framework encapsulating reciprocal flow of information between genetic-patterns, cell behaviors and tissue geometry for successful embryonic development. This framework will be used to identify the etiology of developmental defects and disorders in vivo. By revealing underlying causes for birth defects or miscarriages, our research may, in the long term, also impact human healthcare.
项目摘要 成功的胚胎发育的标志之一是可再生性和健壮性。 形成具有正确形状和大小的器官。器官形态发生的失败会导致 发育障碍,终身出生缺陷,在某些情况下,胚胎致死, 流产为了解决复杂的形式是如何从简单的组织中复制出来的, 跨物种的研究提供了一个简单的机制框架, 模式细胞力学来驱动组织形态发生。然而,这个简单的框架, 信息从基因到细胞再到组织分层流动,未能解释:(i) 生物噪声引起组织模式的变化,(ii)多尺度反馈相互作用,以及 (iii)组织几何形状的指导作用。为了解决这些悬而未决的挑战, 在形态发生中,我们将利用所有脊椎动物生物体共有的典型器官-- 内耳的半规管,在一个可访问的遗传模型系统-斑马鱼。的 三个管道是相互正交的,这种精确的角度结构是必要的, 检测头部旋转并保持平衡。运河的复杂形态 从一个简单的胚胎组织的拓扑重塑,使其成为最 几何学上的复杂和精确的形态发生过程适合研究。探讨 如何运河形态建成实现鲁棒性,我们将建立一个新的实验范式 通过利用高分辨率显微镜,单细胞转录组数据,统计分析, 遗传、物理和生物物理扰动,以及预测性物理建模。这种范式 将用于:(i)测量组织模式和形态的变化;(ii)添加变化 用于解剖出基因编码的 指令与其他监管机制,以及(iii)系统地调查物理 来自组织几何形状的约束和通过“管道化”中的机械转换的反馈 发展过程中的变化。这些创新、独特但互补的方法将 提供一个新的综合框架,将信息的相互流动封装在 成功胚胎发育的遗传模式、细胞行为和组织几何形状。这 该框架将用于识别体内发育缺陷和障碍的病因。通过 揭示出生缺陷或流产的潜在原因,我们的研究可能,从长远来看, 也会影响人类的健康。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akankshi Munjal其他文献

Akankshi Munjal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Akankshi Munjal', 18)}}的其他基金

Identifying the role of dynamic ECM-derived forces in zebrafish semicircular canal morphogenesis
识别动态 ECM 衍生力在斑马鱼半规管形态发生中的作用
  • 批准号:
    10547914
  • 财政年份:
    2019
  • 资助金额:
    $ 131.91万
  • 项目类别:
Identifying the role of dynamic ECM-derived forces in zebrafish semicircular canal morphogenesis
识别动态 ECM 衍生力在斑马鱼半规管形态发生中的作用
  • 批准号:
    10393115
  • 财政年份:
    2019
  • 资助金额:
    $ 131.91万
  • 项目类别:
Identifying the role of dynamic ECM-derived forces in zebrafish semicircular canal morphogenesis
识别动态 ECM 衍生力在斑马鱼半规管形态发生中的作用
  • 批准号:
    10553276
  • 财政年份:
    2019
  • 资助金额:
    $ 131.91万
  • 项目类别:
Identifying the role of dynamic ECM-derived forces in zebrafish semicircular canal morphogenesis
识别动态 ECM 衍生力在斑马鱼半规管形态发生中的作用
  • 批准号:
    9924595
  • 财政年份:
    2019
  • 资助金额:
    $ 131.91万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 131.91万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 131.91万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 131.91万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 131.91万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 131.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 131.91万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 131.91万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 131.91万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 131.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 131.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了