Robust, Generalizable, and Fair Machine Learning Models for Biomedicine
稳健、可推广且公平的生物医学机器学习模型
基本信息
- 批准号:10688028
- 负责人:
- 金额:$ 42.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdverse effectsAlgorithmsBiologicalComputing MethodologiesDataData AnalysesDevelopmentDiseaseEnsureGoalsInformaticsKnowledgeMachine LearningMethodologyMethodsMissionModelingModernizationMolecularMolecular BiologyNational Institute of General Medical SciencesPathologicPathologyPattern RecognitionPharmaceutical PreparationsPharmacologyPhenotypePopulation HeterogeneityPublic HealthResearchResearch ActivitySignal TransductionTechniquesToxic effectVisionadvanced diseaseanalytical methoddrug response predictionimprovedinnovationmachine learning algorithmmachine learning modelmolecular modelingmultidimensional datamultiple omicsnovelpredictive modelingprogramsresponsesuccess
项目摘要
Project Summary
Modern machine learning approaches have attained substantial success in
pattern recognition and high-dimensional data analyses. However, these algorithms
heavily rely on association discovery, which cannot elucidate the mechanisms
underpinning the observed correlations and suffers from limited generalizability. To
address this challenge, the Yu Lab focuses on the development of robust and
generalizable machine learning approaches to integrate various types of biomedical
data, including multi-omics, pathology, and phenotypic information. The goal of the next
five years is to develop novel computational methods that connect machine learning
algorithms with causal inference methodologies to better understand the molecular
mechanisms underpinning disease pathology and enable fair and robust predictions of
drug response and toxicity. The overall vision of the proposed research program is to
establish generalizable data-driven methods to transform biomedical data into robust
prediction and mechanistic models. The proposed approach will systematically connect
diverse biomedical signals to extract previously unknown knowledge on the molecular
mechanisms and derive reliable prediction models for the effects of medications. The
proposed approaches are innovative because they depart from the status quo by
incorporating advanced causal inference techniques with data-driven algorithms to
enhance mechanistic and predictive modeling. This research program is significant
because it is expected to improve our understanding of disease pathology and provide a
fair and generalizable informatics framework for drug response and adverse effects
prediction in diverse populations. The proposed research activities will open new
research horizons by establishing a new machine learning platform for generating
reliable predictions, which will vertically advance molecular biology, pharmacology, and
computational research in biomedicine.
项目摘要
现代机器学习方法在以下方面取得了巨大成功:
模式识别和高维数据分析。然而,这些算法
严重依赖关联发现,不能阐明机制
支持所观察到的相关性,并具有有限的普遍性。到
为了应对这一挑战,Yu Lab专注于开发强大的,
可推广的机器学习方法来整合各种类型的生物医学
数据,包括多组学、病理学和表型信息。下一个目标
五年的时间是开发新的计算方法,
算法与因果推理方法,以更好地了解分子
支持疾病病理学的机制,并能够公平和可靠地预测
药物反应和毒性。拟议研究计划的总体愿景是
建立可推广的数据驱动方法,将生物医学数据转换为
预测和机械模型。拟议的方法将系统地连接
不同的生物医学信号,以提取以前未知的知识的分子
机制,并得出可靠的预测模型的药物的影响。的
所提出的方法是创新的,因为它们通过以下方式脱离了现状:
将先进的因果推理技术与数据驱动算法相结合,
加强机械和预测建模。这项研究计划意义重大
因为它有望提高我们对疾病病理学的理解,
药物反应和不良反应的公平和可推广的信息学框架
在不同的人群中进行预测。研究活动将开启新的
通过建立一个新的机器学习平台,
可靠的预测,这将垂直推进分子生物学,药理学,
生物医学中的计算研究
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A survival guide for interdisciplinary PhD students.
跨学科博士生的生存指南。
- DOI:10.1038/nbt.3671
- 发表时间:2016
- 期刊:
- 影响因子:46.9
- 作者:Yu,Kun-Hsing
- 通讯作者:Yu,Kun-Hsing
Survival Prediction After Neurosurgical Resection of Brain Metastases: A Machine Learning Approach.
神经外科切除脑转移瘤后的生存预测:机器学习方法。
- DOI:10.1227/neu.0000000000002037
- 发表时间:2022
- 期刊:
- 影响因子:4.8
- 作者:Hulsbergen,AlexanderFC;Lo,YuTung;Awakimjan,Ilia;Kavouridis,VasileiosK;Phillips,JohnG;Smith,TimothyR;Verhoeff,JoostJC;Yu,Kun-Hsing;Broekman,MarikeLD;Arnaout,Omar
- 通讯作者:Arnaout,Omar
Prioritization of cancer marker candidates based on the immunohistochemistry staining images deposited in the human protein atlas.
- DOI:10.1371/journal.pone.0081079
- 发表时间:2013
- 期刊:
- 影响因子:3.7
- 作者:Chiang SC;Han CL;Yu KH;Chen YJ;Wu KP
- 通讯作者:Wu KP
Real-world data analyses unveiled the immune-related adverse effects of immune checkpoint inhibitors across cancer types.
- DOI:10.1038/s41698-021-00223-x
- 发表时间:2021-09-10
- 期刊:
- 影响因子:7.9
- 作者:Wang F;Yang S;Palmer N;Fox K;Kohane IS;Liao KP;Yu KH;Kou SC
- 通讯作者:Kou SC
Epidemiology and risk factors for the development of cutaneous toxicities in patients treated with immune-checkpoint inhibitors: A United States population-level analysis.
- DOI:10.1016/j.jaad.2021.03.094
- 发表时间:2022-03
- 期刊:
- 影响因子:13.8
- 作者:Wongvibulsin, Shannon;Pahalyants, Vartan;Kalinich, Mark;Murphy, William;Yu, Kun-Hsing;Wang, Feicheng;Chen, Steven T.;Reynolds, Kerry;Kwatra, Shawn G.;Semenov, Yevgeniy R.
- 通讯作者:Semenov, Yevgeniy R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kun-Hsing Yu其他文献
Kun-Hsing Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kun-Hsing Yu', 18)}}的其他基金
Robust, Generalizable, and Fair Machine Learning Models for Biomedicine
稳健、可推广且公平的生物医学机器学习模型
- 批准号:
10582352 - 财政年份:2021
- 资助金额:
$ 42.38万 - 项目类别:
Robust, Generalizable, and Fair Machine Learning Models for Biomedicine
稳健、可推广且公平的生物医学机器学习模型
- 批准号:
10275864 - 财政年份:2021
- 资助金额:
$ 42.38万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 42.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 42.38万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 42.38万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 42.38万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 42.38万 - 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
- 批准号:
RGPIN-2018-04753 - 财政年份:2022
- 资助金额:
$ 42.38万 - 项目类别:
Discovery Grants Program - Individual