Hyperglycemia of Maternal Diabetes Induces Cardiac Isl1 Positive Progenitor Dysfunction Leading to Heart Defects
母亲糖尿病引起的高血糖会导致心脏 Isl1 阳性祖细胞功能障碍,从而导致心脏缺陷
基本信息
- 批准号:10687863
- 负责人:
- 金额:$ 61.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-28 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:ApoptosisBiologicalBiologyCardiacCell physiologyCellsCellular StressCongenital Heart DefectsDNADNA MethylationDNA Modification MethylasesDNMT3B geneDNMT3aDataDefectDevelopmentDiabetes MellitusDiabetic motherDrug Metabolic DetoxicationEmbryonic DevelopmentEmbryonic HeartEtiologyFunctional disorderGene DeletionGene SilencingGenesGenetic TranscriptionGlucoseHeartHeart AbnormalitiesHyperglycemiaHypermethylationIn VitroInsulinLeadMetforminMethyltransferaseMorphogenesisMyocardial dysfunctionOxidative StressOxidative Stress InductionPathway interactionsPatientsPredispositionPregnancyPregnancy in DiabeticsProliferatingProteinsPublishingRNARNA methylationReactive Oxygen SpeciesRegenerative capacityRepressionResearchRight atrial structureRight ventricular structureRoleSpecific qualifier valueStructural Congenital AnomaliesSuperoxidesTestingTherapeuticTransplantationTubeVentricular Septal DefectsXBP1 genecardiogenesisconotruncal heart defectcritical perioddiabetes pathogenesisdiabeticendoplasmic reticulum stresshomeodomainin vivoinhibitorisletmaternal diabetesmaternal hyperglycemiamimeticsmitochondrial dysfunctionmouse modelneonatenon-diabeticnon-geneticoffspringoverexpressionpostnatalprenatal therapyprogenitorregeneration potentialregenerativerepairedresponsesensorstem cellssuperoxide dismutase 1tempoltranscription factor
项目摘要
Pregestational maternal diabetes is a noninherited factor associated with a fivefold increase in congenital heart defects (CHDs). The second heart field (SHF) progenitors, marked by Isl1, drive the heart tube extension during looping morphogenesis and cardiac chamber formation. The underlying mechanism of diabetes-induced CHDs is unknown but one mechanism may involve the inhibition of Isl1+ SHF progenitor-driven cardiogenesis by maternal diabetes. During the last decade, we have focused on the biology and regenerative capability of cardiac progenitors in CHD patients. It is critical to determine the biological effects of diabetes in vivo and high glucose in vitro on Isl1+ progenitors during embryogenesis and postnatally in order to maximize their regenerative and protective potentials in CHD patients. Therefore, our overarching hypothesis that hyperglycemia of maternal diabetes induces Isl1+ SHF progenitor dysfunction during the critical period of cardiac development through heightened oxidative stress, activation of the major UPR sensor IRE1α and its downstream transcription factor XBP1, which is responsible for DNA hypermethylation and SHF gene silencing leading to repression of RNA methyltransferase METTL14 and m6A RNA methylation. Suppressing cellular stress or modulating DNA/RNA methylation ameliorates defects in SHF progenitors, CHD formation and potential regenerative capacity of these progenitors. Aim 1 will determine whether hyperglycemia of maternal diabetes induces Isl1+ SHF progenitor dysfunction during heart development through oxidative stress. We hypothesize that diabetes causes mitochondrial dysfunction and during cardiac morphogenesis through the induction of oxidative stress and that mitigation of oxidative stress by superoxide dismutase 1 (SOD1) alleviates CHD formation in diabetic pregnancy. Aim 2 will determine the role of the major UPR sensor IRE1α and its downstream effector XBP1 in Isl1+ SHF progenitors leading to CHDs in diabetic pregnancy. We will test the hypothesis that oxidative stress is responsible for ER stress and UPR in Isl1+ SHF progenitors and that suppressing the ER stress-UPR pathway by inactivating either the major UPR sensor IRE1α or its downstream transcription factor XBP1 reduces diabetes-induced CHDs. Aim 3 will determine whether DNA methyltransferases-suppressed RNA methylation in Isl1+ SHF progenitors contributes to diabetes- induced CHDs and the therapeutic implications of these progenitors. We expect that that increased DNA methylation represses RNA methyltransferase-like 14 (METTL14) and RNA N(6)-methyladenosine (m6A) essential for Isl1+ progenitor function and that reducing DNA methylation or restoring RNA methylation specifically in Isl1+ progenitors reduces CHDs and increases the therapeutic values of these cells.
孕前母亲糖尿病是一种非遗传因素,与先天性心脏病 (CHD) 增加五倍相关。以 Isl1 为标记的第二心区 (SHF) 祖细胞在循环形态发生和心室形成过程中驱动心管延伸。糖尿病引起的 CHD 的潜在机制尚不清楚,但一种机制可能涉及母亲糖尿病对 Isl1+ SHF 祖细胞驱动的心脏发生的抑制。在过去的十年中,我们一直专注于先心病患者心脏祖细胞的生物学和再生能力。确定体内糖尿病和体外高葡萄糖对胚胎发生和出生后 Isl1+ 祖细胞的生物学影响至关重要,以便最大限度地发挥其在 CHD 患者中的再生和保护潜力。因此,我们的总体假设是,母亲糖尿病的高血糖通过增强氧化应激、激活主要 UPR 传感器 IRE1α 及其下游转录因子 XBP1(导致 DNA 高甲基化和 SHF 基因沉默,导致 RNA 甲基转移酶抑制),在心脏发育的关键时期诱导 Isl1+ SHF 祖细胞功能障碍。 METTL14 和 m6A RNA 甲基化。抑制细胞应激或调节 DNA/RNA 甲基化可改善 SHF 祖细胞的缺陷、CHD 形成以及这些祖细胞的潜在再生能力。目标 1 将确定母亲糖尿病的高血糖是否会通过氧化应激在心脏发育过程中诱导 Isl1+ SHF 祖细胞功能障碍。我们假设糖尿病通过诱导氧化应激导致线粒体功能障碍和心脏形态发生过程中的线粒体功能障碍,并且超氧化物歧化酶 1 (SOD1) 减轻氧化应激可减轻糖尿病妊娠期间冠心病的形成。目标 2 将确定主要 UPR 传感器 IRE1α 及其下游效应器 XBP1 在 Isl1+ SHF 祖细胞中的作用,导致糖尿病妊娠中的冠心病。我们将检验以下假设:氧化应激是 Isl1+ SHF 祖细胞中 ER 应激和 UPR 的原因,并且通过失活主要 UPR 传感器 IRE1α 或其下游转录因子 XBP1 来抑制 ER 应激-UPR 通路,可减少糖尿病诱发的 CHD。目标 3 将确定 Isl1+ SHF 祖细胞中 DNA 甲基转移酶抑制的 RNA 甲基化是否会导致糖尿病诱发的 CHD 以及这些祖细胞的治疗意义。我们预计DNA甲基化的增加会抑制Isl1+祖细胞功能所必需的RNA甲基转移酶样14 (METTL14)和RNA N(6)-甲基腺苷(m6A),并且减少Isl1+祖细胞中的DNA甲基化或恢复RNA甲基化可减少CHD并增加这些细胞的治疗价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunjay Kaushal其他文献
Sunjay Kaushal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sunjay Kaushal', 18)}}的其他基金
Hyperglycemia of Maternal Diabetes Induces Cardiac Isl1 Positive Progenitor Dysfunction Leading to Heart Defects
母亲糖尿病引起的高血糖会导致心脏 Isl1 阳性祖细胞功能障碍,从而导致心脏缺陷
- 批准号:
10464979 - 财政年份:2020
- 资助金额:
$ 61.51万 - 项目类别:
Hyperglycemia of Maternal Diabetes Induces Cardiac Isl1 Positive Progenitor Dysfunction Leading to Heart Defects
母亲糖尿病引起的高血糖会导致心脏 Isl1 阳性祖细胞功能障碍,从而导致心脏缺陷
- 批准号:
10249305 - 财政年份:2020
- 资助金额:
$ 61.51万 - 项目类别:
Hyperglycemia of Maternal Diabetes Induces Cardiac Isl1 Positive Progenitor Dysfunction Leading to Heart Defects
母亲糖尿病引起的高血糖会导致心脏 Isl1 阳性祖细胞功能障碍,从而导致心脏缺陷
- 批准号:
10026655 - 财政年份:2020
- 资助金额:
$ 61.51万 - 项目类别:
Characterization of the Cardiac Progenitor Cell Exosomes for Optimal Therapeutics
心脏祖细胞外泌体的表征以实现最佳治疗
- 批准号:
10467907 - 财政年份:2019
- 资助金额:
$ 61.51万 - 项目类别:
The Role of C-Kit Positive Cardiac Progenitors in Maternal Diabetes-Induced Heart Defects and the Therapeutic Values of These Cells
C-Kit 阳性心脏祖细胞在母亲糖尿病引起的心脏缺陷中的作用以及这些细胞的治疗价值
- 批准号:
9403962 - 财政年份:2017
- 资助金额:
$ 61.51万 - 项目类别:
Mechanism of transplanted neonatal cardiac progenitor cells to repair ischemic myocardium
移植新生儿心脏祖细胞修复缺血心肌的机制
- 批准号:
10117849 - 财政年份:2014
- 资助金额:
$ 61.51万 - 项目类别:
Biological Characterization of Cardiac Stem Cells
心脏干细胞的生物学特性
- 批准号:
9249960 - 财政年份:2014
- 资助金额:
$ 61.51万 - 项目类别:
Biological Characterization of Cardiac Stem Cells
心脏干细胞的生物学特性
- 批准号:
8840316 - 财政年份:2014
- 资助金额:
$ 61.51万 - 项目类别:
Biological Characterization of Cardiac Stem Cells
心脏干细胞的生物学特性
- 批准号:
9042032 - 财政年份:2014
- 资助金额:
$ 61.51万 - 项目类别:
Characterization of Cell-Based Therapy for Congenital Heart Patients
先天性心脏病患者细胞疗法的特征
- 批准号:
8326807 - 财政年份:2009
- 资助金额:
$ 61.51万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 61.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
- 批准号:
571519-2021 - 财政年份:2022
- 资助金额:
$ 61.51万 - 项目类别:
Alliance Grants
The biology of Ciceribacter spp. and their adaptations as biological chassis for engineered nitrogen fixation
西塞里杆菌属的生物学。
- 批准号:
2735213 - 财政年份:2022
- 资助金额:
$ 61.51万 - 项目类别:
Studentship
NSF Postdoctoral Fellowship in Biology: Symbiosis as a Means of Survival for Biological Soil Crust Microbes
NSF 生物学博士后奖学金:共生作为生物土壤结皮微生物的生存手段
- 批准号:
2209217 - 财政年份:2022
- 资助金额:
$ 61.51万 - 项目类别:
Fellowship Award
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
- 批准号:
2242530 - 财政年份:2022
- 资助金额:
$ 61.51万 - 项目类别:
Standard Grant
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
- 批准号:
RGPIN-2021-03987 - 财政年份:2022
- 资助金额:
$ 61.51万 - 项目类别:
Discovery Grants Program - Individual
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2022
- 资助金额:
$ 61.51万 - 项目类别:
Discovery Grants Program - Individual
BEORHN: Biological Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟对硝化反应中的活性羟胺进行生物酶氧化
- 批准号:
BB/V01577X/1 - 财政年份:2022
- 资助金额:
$ 61.51万 - 项目类别:
Research Grant
NSF Postdoctoral Fellowship in Biology FY 2020: Integrating biological collections and observational data sources to estimate long-term butterfly population trends
2020 财年 NSF 生物学博士后奖学金:整合生物收藏和观测数据源来估计蝴蝶种群的长期趋势
- 批准号:
2010698 - 财政年份:2021
- 资助金额:
$ 61.51万 - 项目类别:
Fellowship Award
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2021
- 资助金额:
$ 61.51万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




