Molecular and Cell Biology of Neuromesodermal Progenitors

神经中胚层祖细胞的分子和细胞生物学

基本信息

项目摘要

Project Summary: We aim to understand the normal biology of neuromesodermal progenitors (NMPs), as well as to use NMPs to model cellular and molecular mechanisms in vivo. NMPs are basal progenitor cells located in the tailbud of vertebrate embryos that continue to make a germ-layer decision after gastrulation to generate ectoderm and mesoderm. As a primary source of cells generating the spinal cord, skeletal muscle, and other mesodermal derivatives, NMPs are a key cell type contributing to the formation of the vertebrate body plan. Studying NMPs has advanced our understanding of how body plans are generated, improved techniques for in vitro tissue generation, and provided critical insights into signaling pathway mechanisms. I discovered zebrafish NMPs as a postdoctoral fellow and my lab continues to focus on them. Our recent work has uncovered important roles for the transcription factor Sox2 in maintaining NMPs in an undifferentiated state through interactions with the canonical Wnt signaling pathway. This, combined with the past research showing the Wnt signaling effector bcat physically interacts with Sox2, indicates Wnt signaling can modulate gene expression and biological activity directly via Sox2. Little is known about this exciting branch of the Wnt/ bcat pathway. We will interrogate this pathway of Sox2 and Wnt/ bcat interactions at a number of biological levels, focusing on direct physical interactions between Sox2 and bcat, as well as genome wide analysis of Sox2/ bcat mediated transcriptional regulation. We hypothesize that Sox2/ bcat signaling represents a new arm of the Wnt/ bcat pathway distinct from the canonical TCF/LEF transcription factor family mediated signaling. We also recently developed a new Cyclin Dependent Kinase biosensor transgenic zebrafish and observed that NMPs and some of their derivatives exist in restricted cell cycle phases. The NMPs are held primarily in the G2 phase, while mesodermal notochord progenitors are restricted to the G1 phase. Cell cycle phase is broadly implicated in various aspects of stem cell maintenance, cell differentiation, and cell migration and invasion. We will manipulate the cell cycle in NMPs and their derivatives to understand how the cell cycle phase impacts normal NMP development. We hypothesize that the G2 phase restriction of NMPs is essential for maintenance of the undifferentiated state and for receipt of Wnt signaling based on G2 dependent receptor activation. We also hypothesize that the G1 phase of notochord progenitors is essential for their morphogenetic behavior of convergence and extension. Together, our work will shed important light on not only NMP development and vertebrate body plan formation, but also basic principles of cell biology and signaling. Wnt/ bcat signaling and Sox2 are found together and play important roles in numerous normal and diseased cellular contexts, including stem cells and cancer. The cell cycle is a fundamental aspect of normal development and is dysregulated in diseases such as cancer. Understanding how cell cycle phase impacts cell fate and morphogenetic behaviors in vivo will provide essential insight into normal and disease states.
项目摘要: 我们旨在了解神经抑制祖细胞(NMP)的正常生物学,并使用NMP 在体内建模细胞和分子机制。 NMP是位于尾巴的基础祖细胞 在胃胃后继续做出细菌层决定以产生外胚层和 中胚层。作为产生脊髓,骨骼肌和其他中胚层的主要细胞来源 衍生物,NMP是有助于形成脊椎动物身体计划的关键细胞类型。研究NMP 已经提出了我们对如何产生身体计划的理解,改进了体外组织的技术 生成,并为信号通路机制提供了关键的见解。我发现斑马鱼NMP 博士后研究员和我的实验室继续专注于他们。我们最近的工作已经揭示了重要的角色 对于转录因子SOX2在通过与 规范WNT信号通路。这与过去的研究结合了Wnt信号效应器 BCAT与SOX2物理相互作用,表明Wnt信号传导可以调节基因表达和生物学 直接通过SOX2活动。关于WNT/ BCAT途径的这个令人兴奋的分支,知之甚少。我们将 询问Sox2和Wnt/ BCAT相互作用的这种途径在许多生物学层面上,重点是直接 SOX2和BCAT之间的物理相互作用,以及SOX2/ BCAT介导的基因组广泛分析 转录调节。我们假设SOX2/ BCAT信号代表WNT/ BCAT的新臂 与规范TCF/LEF转录因子家族介导的信号传导不同的途径。我们最近也 开发了一种新的依赖细胞周期蛋白的激酶生物传感器转基因斑马鱼,并观察到NMP和一些 它们的衍生物存在于受限的细胞周期阶段。 NMP主要保持在G2阶段,而 中虫脊索祖细胞仅限于G1阶段。细胞周期阶段与 干细胞维持,细胞分化以及细胞迁移和侵袭的各个方面。我们将 操纵NMP及其衍生物中的细胞周期,以了解细胞周期阶段如何影响正常 NMP开发。我们假设NMP的G2阶段限制对于维持 基于G2依赖受体激活的未分化状态和接收WNT信号传导。我们也是 假设Notochord祖细胞的G1阶段对于它们的形态发生行为至关重要 收敛和扩展。在一起,我们的工作将不仅阐明NMP开发和 脊椎动物身体计划的形成,也是细胞生物学和信号传导的基本原理。 wnt/ bcat信号和 Sox2一起发现并在许多正常和患病的细胞环境中起重要作用,包括 干细胞和癌症。细胞周期是正常发育的基本方面,在 癌症等疾病。了解细胞周期阶段如何影响细胞命运和形态发生行为 体内将为正常状态和疾病状态提供基本的见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin L Martin其他文献

itFISH: Enhanced Staining by Iterative Fluorescent In Situ Hybridization.
itFISH:通过迭代荧光原位杂交增强染色。
  • DOI:
    10.1089/zeb.2016.1413
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Richard H. Row;Benjamin L Martin
  • 通讯作者:
    Benjamin L Martin

Benjamin L Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin L Martin', 18)}}的其他基金

Maintenance, germ-layer induction, and patterning of neuromesodermal progenitors
神经中胚层祖细胞的维持、胚层诱导和模式化
  • 批准号:
    10416097
  • 财政年份:
    2018
  • 资助金额:
    $ 39.03万
  • 项目类别:
Maintenance, germ-layer induction, and patterning of neuromesodermal progenitors
神经中胚层祖细胞的维持、胚层诱导和模式化
  • 批准号:
    10416020
  • 财政年份:
    2018
  • 资助金额:
    $ 39.03万
  • 项目类别:
Diversity supplement for Courtney Tello
考特尼·特洛 (Courtney Tello) 的多元化补充
  • 批准号:
    10336185
  • 财政年份:
    2018
  • 资助金额:
    $ 39.03万
  • 项目类别:
Maintenance, germ-layer induction, and patterning of neuromesodermal progenitors
神经中胚层祖细胞的维持、胚层诱导和模式化
  • 批准号:
    10620438
  • 财政年份:
    2018
  • 资助金额:
    $ 39.03万
  • 项目类别:

相似国自然基金

釉原蛋白丝带状组装体的淀粉样组装行为及其生物学功能特性研究
  • 批准号:
    32301042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
鲍曼不动杆菌抵御黄色黏球菌捕食行为的分子机制与生物学意义
  • 批准号:
    32370114
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
孤独症易感基因缺失导致小脑发育异常和行为障碍的神经生物学机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
面向人体不同pH环境的可降解磁驱动水凝胶机器人的行为模型及生物学效应仿真
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
龙骨骨折诱导蛋鸡消极情绪的行为反应及其神经生物学机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating FGF Signaling Dynamics in migrating cells
研究迁移细胞中的 FGF 信号动力学
  • 批准号:
    10679898
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
Oral pathogen - mediated pro-tumorigenic transformation through disruption of an Adherens Junction - associated RNAi machinery
通过破坏粘附连接相关的 RNAi 机制,口腔病原体介导促肿瘤转化
  • 批准号:
    10752248
  • 财政年份:
    2024
  • 资助金额:
    $ 39.03万
  • 项目类别:
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
  • 批准号:
    10508305
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
  • 批准号:
    10596786
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
Microscopy and Image Analysis Core
显微镜和图像分析核心
  • 批准号:
    10557025
  • 财政年份:
    2023
  • 资助金额:
    $ 39.03万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了