Molecular and Cell Biology of Neuromesodermal Progenitors
神经中胚层祖细胞的分子和细胞生物学
基本信息
- 批准号:10689582
- 负责人:
- 金额:$ 39.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:BehaviorBiologicalBiologyBiosensorCell CycleCell Differentiation processCell MaintenanceCell modelCellsCellular biologyCyclin-Dependent KinasesDevelopmentDiseaseEctodermEmbryoFamilyG1 PhaseG2 PhaseGene ExpressionGenerationsGerm LayersIn VitroInvadedKnowledgeMaintenanceMalignant NeoplasmsMediatingMesodermMesoderm CellMolecularMolecular BiologyNormal CellPathway interactionsPhasePlayPostdoctoral FellowReceptor ActivationRegenerative MedicineResearchRoleSignal PathwaySignal TransductionSkeletal MuscleSourceSpinal CordTCF Transcription FactorTechniquesTissuesTranscriptional RegulationTransgenic OrganismsUndifferentiatedWNT Signaling PathwayWorkZebrafisharmcell behaviorcell motilitycell typeembryo cellgastrulationgenome-wide analysishuman diseaseimprovedin vivoinsightnotochordprogenitorstem cellstranscription factorvertebrate embryos
项目摘要
Project Summary:
We aim to understand the normal biology of neuromesodermal progenitors (NMPs), as well as to use NMPs to
model cellular and molecular mechanisms in vivo. NMPs are basal progenitor cells located in the tailbud of
vertebrate embryos that continue to make a germ-layer decision after gastrulation to generate ectoderm and
mesoderm. As a primary source of cells generating the spinal cord, skeletal muscle, and other mesodermal
derivatives, NMPs are a key cell type contributing to the formation of the vertebrate body plan. Studying NMPs
has advanced our understanding of how body plans are generated, improved techniques for in vitro tissue
generation, and provided critical insights into signaling pathway mechanisms. I discovered zebrafish NMPs as
a postdoctoral fellow and my lab continues to focus on them. Our recent work has uncovered important roles
for the transcription factor Sox2 in maintaining NMPs in an undifferentiated state through interactions with the
canonical Wnt signaling pathway. This, combined with the past research showing the Wnt signaling effector
bcat physically interacts with Sox2, indicates Wnt signaling can modulate gene expression and biological
activity directly via Sox2. Little is known about this exciting branch of the Wnt/ bcat pathway. We will
interrogate this pathway of Sox2 and Wnt/ bcat interactions at a number of biological levels, focusing on direct
physical interactions between Sox2 and bcat, as well as genome wide analysis of Sox2/ bcat mediated
transcriptional regulation. We hypothesize that Sox2/ bcat signaling represents a new arm of the Wnt/ bcat
pathway distinct from the canonical TCF/LEF transcription factor family mediated signaling. We also recently
developed a new Cyclin Dependent Kinase biosensor transgenic zebrafish and observed that NMPs and some
of their derivatives exist in restricted cell cycle phases. The NMPs are held primarily in the G2 phase, while
mesodermal notochord progenitors are restricted to the G1 phase. Cell cycle phase is broadly implicated in
various aspects of stem cell maintenance, cell differentiation, and cell migration and invasion. We will
manipulate the cell cycle in NMPs and their derivatives to understand how the cell cycle phase impacts normal
NMP development. We hypothesize that the G2 phase restriction of NMPs is essential for maintenance of the
undifferentiated state and for receipt of Wnt signaling based on G2 dependent receptor activation. We also
hypothesize that the G1 phase of notochord progenitors is essential for their morphogenetic behavior of
convergence and extension. Together, our work will shed important light on not only NMP development and
vertebrate body plan formation, but also basic principles of cell biology and signaling. Wnt/ bcat signaling and
Sox2 are found together and play important roles in numerous normal and diseased cellular contexts, including
stem cells and cancer. The cell cycle is a fundamental aspect of normal development and is dysregulated in
diseases such as cancer. Understanding how cell cycle phase impacts cell fate and morphogenetic behaviors
in vivo will provide essential insight into normal and disease states.
项目概要:
我们的目标是了解神经中胚层祖细胞 (NMP) 的正常生物学,并利用 NMP 来
体内模型细胞和分子机制。 NMP 是位于尾芽的基底祖细胞
原肠胚形成后继续做出胚层决定以产生外胚层的脊椎动物胚胎
中胚层。作为产生脊髓、骨骼肌和其他中胚层细胞的主要来源
衍生物,NMP 是有助于脊椎动物身体计划形成的关键细胞类型。研究 NMP
增进了我们对身体计划如何生成的理解,改进了体外组织技术
的产生,并提供了对信号通路机制的重要见解。我发现斑马鱼 NMP 是
一名博士后研究员和我的实验室继续关注它们。我们最近的工作揭示了重要的角色
转录因子 Sox2 通过与 NMP 相互作用维持 NMP 处于未分化状态
经典Wnt信号通路。这与过去显示 Wnt 信号传导效应器的研究相结合
bcat 与 Sox2 发生物理相互作用,表明 Wnt 信号传导可以调节基因表达和生物学
直接通过 Sox2 进行活动。人们对 Wnt/bcat 通路的这个令人兴奋的分支知之甚少。我们将
在多个生物学水平上询问 Sox2 和 Wnt/bcat 相互作用的这条途径,重点关注直接
Sox2 和 bcat 之间的物理相互作用,以及 Sox2/ bcat 介导的全基因组分析
转录调控。我们假设 Sox2/ bcat 信号代表 Wnt/ bcat 的一个新分支
与典型的 TCF/LEF 转录因子家族介导的信号传导途径不同。我们最近也
开发了一种新的细胞周期蛋白依赖性激酶生物传感器转基因斑马鱼,并观察到 NMP 和一些
它们的衍生物存在于受限的细胞周期阶段。 NMP 主要在 G2 阶段举行,而
中胚层脊索祖细胞仅限于 G1 期。细胞周期阶段广泛涉及
干细胞维持、细胞分化、细胞迁移和侵袭的各个方面。我们将
操纵 NMP 及其衍生物中的细胞周期,以了解细胞周期阶段如何影响正常
NMP开发。我们假设 NMP 的 G2 相限制对于维持
未分化状态并接收基于 G2 依赖性受体激活的 Wnt 信号传导。我们也
假设脊索祖细胞的 G1 期对其形态发生行为至关重要
收敛和延伸。我们的共同努力不仅将为 NMP 的开发和
脊椎动物身体计划的形成,也是细胞生物学和信号传导的基本原理。 Wnt/bcat 信号传导和
Sox2 一起被发现,并在许多正常和患病的细胞环境中发挥重要作用,包括
干细胞和癌症。细胞周期是正常发育的一个基本方面,并且在以下情况下失调:
癌症等疾病。了解细胞周期阶段如何影响细胞命运和形态发生行为
体内研究将为了解正常和疾病状态提供重要的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin L Martin其他文献
itFISH: Enhanced Staining by Iterative Fluorescent In Situ Hybridization.
itFISH:通过迭代荧光原位杂交增强染色。
- DOI:
10.1089/zeb.2016.1413 - 发表时间:
2017 - 期刊:
- 影响因子:2
- 作者:
Richard H. Row;Benjamin L Martin - 通讯作者:
Benjamin L Martin
Benjamin L Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin L Martin', 18)}}的其他基金
Maintenance, germ-layer induction, and patterning of neuromesodermal progenitors
神经中胚层祖细胞的维持、胚层诱导和模式化
- 批准号:
10416097 - 财政年份:2018
- 资助金额:
$ 39.03万 - 项目类别:
Maintenance, germ-layer induction, and patterning of neuromesodermal progenitors
神经中胚层祖细胞的维持、胚层诱导和模式化
- 批准号:
10416020 - 财政年份:2018
- 资助金额:
$ 39.03万 - 项目类别:
Diversity supplement for Courtney Tello
考特尼·特洛 (Courtney Tello) 的多元化补充
- 批准号:
10336185 - 财政年份:2018
- 资助金额:
$ 39.03万 - 项目类别:
Maintenance, germ-layer induction, and patterning of neuromesodermal progenitors
神经中胚层祖细胞的维持、胚层诱导和模式化
- 批准号:
10620438 - 财政年份:2018
- 资助金额:
$ 39.03万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 39.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
- 批准号:
571519-2021 - 财政年份:2022
- 资助金额:
$ 39.03万 - 项目类别:
Alliance Grants
The biology of Ciceribacter spp. and their adaptations as biological chassis for engineered nitrogen fixation
西塞里杆菌属的生物学。
- 批准号:
2735213 - 财政年份:2022
- 资助金额:
$ 39.03万 - 项目类别:
Studentship
NSF Postdoctoral Fellowship in Biology: Symbiosis as a Means of Survival for Biological Soil Crust Microbes
NSF 生物学博士后奖学金:共生作为生物土壤结皮微生物的生存手段
- 批准号:
2209217 - 财政年份:2022
- 资助金额:
$ 39.03万 - 项目类别:
Fellowship Award
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
- 批准号:
2242530 - 财政年份:2022
- 资助金额:
$ 39.03万 - 项目类别:
Standard Grant
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
- 批准号:
RGPIN-2021-03987 - 财政年份:2022
- 资助金额:
$ 39.03万 - 项目类别:
Discovery Grants Program - Individual
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2022
- 资助金额:
$ 39.03万 - 项目类别:
Discovery Grants Program - Individual
BEORHN: Biological Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟对硝化反应中的活性羟胺进行生物酶氧化
- 批准号:
BB/V01577X/1 - 财政年份:2022
- 资助金额:
$ 39.03万 - 项目类别:
Research Grant
NSF Postdoctoral Fellowship in Biology FY 2020: Integrating biological collections and observational data sources to estimate long-term butterfly population trends
2020 财年 NSF 生物学博士后奖学金:整合生物收藏和观测数据源来估计蝴蝶种群的长期趋势
- 批准号:
2010698 - 财政年份:2021
- 资助金额:
$ 39.03万 - 项目类别:
Fellowship Award
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2021
- 资助金额:
$ 39.03万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




