M-ISIC: A Multimodal Open-Source International Skin Imaging Collaboration Informatics Platform for Automated Skin Cancer Detection
M-ISIC:用于自动皮肤癌检测的多模式开源国际皮肤成像协作信息学平台
基本信息
- 批准号:10689201
- 负责人:
- 金额:$ 81.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsArchivesArtificial IntelligenceAutomationBostonCancer DetectionClinicalClinical DistributionClinical TrialsCollaborationsComplexComputer Vision SystemsComputer softwareCustomDataData SetData SourcesDatabase Management SystemsDermatologyDetectionDevelopmentDevicesDiagnosisDiagnosticDisparateEarly DiagnosisEducationEvaluationExperimental ModelsGoalsHealth protectionHumanImageInformaticsIngestionInternationalInterventionLabelLinkMachine LearningMalignant NeoplasmsManualsMedical EducationMetadataMethodsModalityModelingMorbidity - disease rateMorphologic artifactsMultimodal ImagingOnline SystemsOperative Surgical ProceduresOrganizational EfficiencyParticipantPathologyPerformancePersonsPlug-inProcessQuality ControlRadiology SpecialtyResearchResolutionRetrievalScreening for Skin CancerSkinSkin CancerSortingTattooingTechniquesTestingTraining and EducationUnited StatesVisualVisualizationWorkalgorithm developmentanalysis pipelinearchive dataartificial intelligence algorithmcancer typeclinical applicationclinical translationdata curationdata ingestiondata integrationdata qualitydata wranglingdesigndiagnostic platformdigital technologyflexibilityimage archival systemimage registrationimprovedinformatics toollarge datasetsmelanomamicroscopic imagingmortalitymultidimensional datamultimodal datamultimodalitynext generationopen sourceopen source toolpreventprimary care clinicianquality assurancereflectance confocal microscopyresearch clinical testingresponsesuccessteledermatologytool
项目摘要
ABSTRACT
Skin cancer is the most common type of cancer in the United States. It is critical to detect it early as skin
cancers, especially melanoma, can be cured by surgery alone if detected early. As digital technology improves,
skin cancer detection, and especially automated skin cancer detection, is increasingly being performed over
images either in person or remotely via teledermatology. While artificial intelligence (AI) for skin cancer
detection exceeds human performance on static images, algorithm performance on representative, multimodal
data is still underdeveloped due to data collected piecemeal with different devices, without consistent image
acquisition standards or automated registration. A well-curated dataset of annotated skin images helps meet a
unique need beyond machine learning, as primary care clinicians also require expertly annotated images for
education and training. We will overcome the lack of imaging standards and disparate data sources
problematic in dermatology imaging by developing automated ingestion, organization, registration, and curation
pipeline to improve AI for skin cancer detection.
The International Skin Imaging Collaboration (ISIC) Archive includes over 2,500 citations, 156,000 images, 100
daily users, and 5 AI grand challenges with over 3,500 participants. The ISIC archive is built upon the open-
source, NCI- supported, open-source web-based data management platform, Girder. The Girder platform is
highly flexible, and has been extended to multiple applications (e.g., pathology, radiology).
The flexibility of the Girder platform will enable us to address four major barriers that prevent our ability
to efficiently ingest, host and serve large amounts of multidimensional data at the scale of non-medical image
repositories (e.g. ImageNet): (1) need for laborious expert data curation and quality assurance review for
protected health information, imaging artifacts, and incorrect labels (SA1.1); (2) limited metadata without
content-based features creating cumbersome image retrieval (SA1.2); (3) lack of multimodal viewing
capabilities (SA2); and (4) inadequate integration to existing AI and annotation software, preventing flexible,
hypothesis-driven experimentation (SA3).
The proposed informatics project aimed at data ingestion, multimodal visualization, and organization through
ML and computer vision-based automation build on the initial success of the International Skin Imaging
Collaboration (ISIC) Archive and the Girder platform upon which it is built. They will enable scaling of the
Archive to millions of images, enabling multimodal experimentation with registered reflectance confocal
microscopy images, and nimbly facilitate AI and translational experimentation for improved skin cancer
detection.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kivanc Kose其他文献
Kivanc Kose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kivanc Kose', 18)}}的其他基金
M-ISIC: A Multimodal Open-Source International Skin Imaging Collaboration Informatics Platform for Automated Skin Cancer Detection
M-ISIC:用于自动皮肤癌检测的多模式开源国际皮肤成像协作信息学平台
- 批准号:
10528944 - 财政年份:2022
- 资助金额:
$ 81.07万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 81.07万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 81.07万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 81.07万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 81.07万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 81.07万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 81.07万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 81.07万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 81.07万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 81.07万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 81.07万 - 项目类别:
Continuing Grant














{{item.name}}会员




