Infrastructure for hyperaligning fMRI data and estimating functional topographies
用于超对齐功能磁共振成像数据和估计功能拓扑的基础设施
基本信息
- 批准号:10689268
- 负责人:
- 金额:$ 64.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-23 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAlgorithmsAlzheimer&aposs DiseaseAnatomyArchitectureAtlasesBrainBrain imagingClinicalCommunitiesComputer softwareConsumptionDataData AggregationData SetDatabasesFunctional Magnetic Resonance ImagingGenerationsGrainHourHumanIndividualIndividual DifferencesInfrastructureInosine DialdehydeMapsModelingMolecular ConformationNeurosciencesParticipantPersonality TestsPopulationPopulation AnalysisPrincipal InvestigatorResearchResearch InfrastructureResearch PersonnelResearch Project GrantsResearch SupportResourcesRestSamplingScanningSoftware ToolsSpace ModelsStandardizationStructureSurfaceSystemTimeWorkaffective neuroscienceaging brainbehavior predictioncognitive neurosciencecognitive testingconnectomecortex mappingcost effectivedata sharingexperimental analysisflexibilityhigh dimensionalityinformation modelmovieneuroimagingopen sourcepreservationresponsesharing platformtool
项目摘要
PROJECT SUMMARY
Shared information in cortical functional architecture is embedded in topographies that are
idiosyncratic, posing a major impediment for functional brain imaging research. Hyperalignment
resolves this problem by projecting information from individual brains into a common model
information space.
The proposed research project will create HyperBase – research infrastructure that will
enable the brain imaging research community to leverage hyperalignment to greatly enrich their
data, enable analyses of shared information and individual differences embedded in
idiosyncratic fine-scale cortical topographies, and create a data sharing platform for data in the
hyperaligned common model information space. The infrastructure will be an optimized,
standardized template common model space based on a normative database, turnkey software
tools for hyperaligning new brains and estimating individual functional topographies, and a
framework for sharing hyperaligned data. These data and tools will provide community
infrastructural support for research on a broad range of topics in clinical neuroscience, brain
aging, and basic cognitive neuroscience. The proposed database will consist of fMRI data in 60
participants collected during movie viewing, story listening, at rest, and during a large set of
functional localizers, augmented with demographic information and cognitive and personality
test scores.
Specific aims
1. Produce an optimized, standardized template for hyperalignment based on a normative
database with open-source software that will allow mapping numerous functional
topographies, based on standard localizer data in the normative sample, into new
participant brains using only fMRI data collected while the new participants watch a movie,
listen to a story, or are at rest.
2. Adapt hyperalignment algorithms to work with a standard template and estimate functional
topographies via the template and normative localizer data. Develop new hyperalignment
algorithms that increase power, precision, and flexibility.
3. Create a system for sharing functional brain imaging data that are projected into the
common information space model, allowing accumulation of data in a framework that
affords at a fine-grained level of detail. Hyperalign existing public datasets.
项目总结
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria I Gobbini其他文献
Maria I Gobbini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 64.84万 - 项目类别:
Continuing Grant














{{item.name}}会员




