Models and methods for automatically measuring disease body-wide and staging disease via FDG-PET/CT in Lymphoma

通过 FDG-PET/CT 自动测量淋巴瘤全身疾病和分期疾病的模型和方法

基本信息

  • 批准号:
    10689731
  • 负责人:
  • 金额:
    $ 54.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-12 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Quantitative Radiology holds great promise to transform our ability to diagnose, monitor, stage, prognosticate, and detect diseases as well as to plan and guide patient therapeutic interventions. However, the process of locating and delineating anatomic organs and pathologic regions in medical images, known as image segmentation, at a high level of automation has remained a major hurdle to these advances. Most developments on image segmentation have focused on a specific organ or a small group of objects in a specific body region. A new method or a major adaptation of an existing method is engineered when any of these parameters changed. Such an approach is not sustainable and becomes a stumbling block when dealing with whole-body systemic diseases where body-wide image analytics is required. A critical advance is needed in this field to overcome two main challenges: (1) Although prior information about normal anatomy is deemed vital for image segmentation and analysis, its creation and utilization body-wide on a massive scale have not been attempted and are sorely lacking. (2) Techniques to employ such information and methods for body-wide disease quantification at high levels of automation do not exist. The overarching goal is to overcome these challenges by developing a body-wide and generalizable anatomy-guided deep learning image segmentation methodology and demonstrate its application in the study of patients with diffuse large B cell lymphoma (DLBCL) for which PET-based staging and response assessment are of paramount importance. The project has three specific aims. Aim1: To develop a family of body-wide anatomy models representing the entire human adult age spectrum. Existing FDG PET/CT scans of 600 patients from two institutions (Penn and New York Proton Center) covering 10 age groups will be utilized to build anatomy models involving 50 organs and 50 lymph node zones in the extended body torso including neck, thorax, abdomen, and pelvis. A family of 40 anatomy models representing the 4 body regions and 10 age groups will be created from roughly 60,000 3D object samples. Aim2: To develop, implement, and validate a methodology for localizing objects and to quantify disease without explicitly delineating organs and lesions. Gender- and age-specific anatomy models will be utilized for automatically locating the above 100 objects in any given patient PET/CT image and to quantify disease in each body region, organ, and lymph node zone. The methods will be tested on 400 PET/CT images of DLBCL patients. Aim3: To develop and validate an automated method of DLBCL disease staging and prognosis. The disease quantity information will be utilized to develop automated staging and outcome prediction algorithms which will be tested on the above 400 cases in comparison to current clinical methods. Two key outcomes of this project will be: an unprecedented well-curated database of body-wide images, segmented objects, and family of models; and a validated methodology for automatic body-wide disease quantification and disease staging in DLBCL.
定量放射学有望改变我们的诊断、监测、分期、预测、

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prediction of lymphoma response to CAR T cells by deep learning-based image analysis.
  • DOI:
    10.1371/journal.pone.0282573
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHEN J SCHUSTER其他文献

STEPHEN J SCHUSTER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHEN J SCHUSTER', 18)}}的其他基金

Models and methods for automatically measuring disease body-wide and staging disease via FDG-PET/CT in Lymphoma
通过 FDG-PET/CT 自动测量淋巴瘤全身疾病和分期疾病的模型和方法
  • 批准号:
    10296059
  • 财政年份:
    2021
  • 资助金额:
    $ 54.77万
  • 项目类别:
Models and methods for automatically measuring disease body-wide and staging disease via FDG-PET/CT in Lymphoma
通过 FDG-PET/CT 自动测量淋巴瘤全身疾病和分期疾病的模型和方法
  • 批准号:
    10468984
  • 财政年份:
    2021
  • 资助金额:
    $ 54.77万
  • 项目类别:
RENAL ERYTHROPOIETIN GENE EXPRESSION
肾促红细胞生成素基因表达
  • 批准号:
    3082555
  • 财政年份:
    1990
  • 资助金额:
    $ 54.77万
  • 项目类别:
RENAL ERYTHROPOIETIN GENE EXPRESSION
肾促红细胞生成素基因表达
  • 批准号:
    3082556
  • 财政年份:
    1990
  • 资助金额:
    $ 54.77万
  • 项目类别:
RENAL ERYTHROPOIETIN GENE EXPRESSION
肾促红细胞生成素基因表达
  • 批准号:
    3082554
  • 财政年份:
    1990
  • 资助金额:
    $ 54.77万
  • 项目类别:
RENAL ERYTHROPOIETIN GENE EXPRESSION
肾促红细胞生成素基因表达
  • 批准号:
    2209900
  • 财政年份:
    1990
  • 资助金额:
    $ 54.77万
  • 项目类别:
RENAL ERYTHROPOIETIN GENE EXPRESSION
肾促红细胞生成素基因表达
  • 批准号:
    3082553
  • 财政年份:
    1990
  • 资助金额:
    $ 54.77万
  • 项目类别:
CELLULAR, ORIGIN OF ERYTHROPOIETIN
细胞,促红细胞生成素的起源
  • 批准号:
    3050257
  • 财政年份:
    1987
  • 资助金额:
    $ 54.77万
  • 项目类别:
CELLULAR ORIGIN OF ERYTHROPOIETIN
促红细胞生成素的细胞来源
  • 批准号:
    3050256
  • 财政年份:
    1986
  • 资助金额:
    $ 54.77万
  • 项目类别:

相似海外基金

Contributions of cell behaviours to dorsal closure in Drosophila abdomen
细胞行为对果蝇腹部背侧闭合的贡献
  • 批准号:
    2745747
  • 财政年份:
    2022
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Studentship
Using the GI Tract as a Window to the Autonomic Nervous System in the Thorax and in the Abdomen
使用胃肠道作为胸部和腹部自主神经系统的窗口
  • 批准号:
    10008166
  • 财政年份:
    2018
  • 资助金额:
    $ 54.77万
  • 项目类别:
Development of a free-breathing dynamic contrast-enhanced (DCE)-MRI technique for the abdomen using a machine learning approach
使用机器学习方法开发腹部自由呼吸动态对比增强 (DCE)-MRI 技术
  • 批准号:
    18K18364
  • 财政年份:
    2018
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined motion-compensated and super-resolution image reconstruction to improve magnetic resonance imaging of the upper abdomen
结合运动补偿和超分辨率图像重建来改善上腹部的磁共振成像
  • 批准号:
    1922800
  • 财政年份:
    2017
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Studentship
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
  • 批准号:
    EP/P013309/1
  • 财政年份:
    2017
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Research Grant
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
  • 批准号:
    EP/P012434/1
  • 财政年份:
    2017
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Research Grant
Relationship between touching the fetus via the abdomen of pregnant women and fetal attachment based on changes in oxytocin levels
基于催产素水平变化的孕妇腹部触摸胎儿与胎儿附着的关系
  • 批准号:
    16K12096
  • 财政年份:
    2016
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design Research of Healthcare System based on the Suppleness of Upper Abdomen
基于上腹部柔软度的保健系统设计研究
  • 批准号:
    16K00715
  • 财政年份:
    2016
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
  • 批准号:
    453832-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Postdoctoral Fellowships
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
  • 批准号:
    453832-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 54.77万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了