Quantitative Analytics and Data Management
定量分析和数据管理
基本信息
- 批准号:10689041
- 负责人:
- 金额:$ 100.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAlgorithmsCaliforniaCaregiversCatalogingCessation of lifeCodeCollaborationsComplexDataData SetDatabase Management SystemsDementiaDiagnosisDiseaseDocumentationEconomicsElderlyEnsureEpidemiologistEventFamilyFamily health statusFundingGoalsHealthHealth ServicesHealth and Retirement StudyHealth systemHomeHuman ResourcesIndividualInfrastructureKnowledgeLibrariesLibrary MaterialsLinkMedicalMedicareMedicare/MedicaidMethodsModelingObservational StudyOnline SystemsPalliative CarePatientsPersonsPharmaceutical PreparationsPoliciesPolicy MakerPopulation StudyProcessResearchResearch PersonnelResearch Project GrantsResearch SupportResourcesSample SizeSan FranciscoScientistStatistical MethodsSurveysTechniquesTimeTime Series AnalysisUnited States Centers for Medicare and Medicaid ServicesUniversitiesWeightWorkanalytical methodanalytical toolclinical careclinically relevantcostdata cleaningdata managementdementia careexperiencefollow-uphealth service usehospice environmentlongitudinal coursemedical schoolsnovelpopulation basedprogramsskillssocialsynergismtrend
项目摘要
RCB PROJECT SUMMARY
The proposed program project, Deploying High Value Longitudinal Population-Based data in Dementia
Research (DEVELOP AD RESEARCH), will leverage two national, longitudinal, population-based studies, the
Health and Retirement Study (HRS) and the National Health and Aging Trends Study (NHATS), both of which
are linked to Centers for Medicare and Medicaid Services (CMS) claims and assessment files, to expand our
understanding of the longitudinal course of dementia and the complex interactions of medical, social, and
health system factors. Research Core B (RCB) – Quantitative Analytics and Data Management will support
the goals of the P01 and its five research projects through four specific aims: 1) To consolidate HRS, NHATS,
and linked CMS database management activities to promote scientific rigor and efficiency throughout the P01;
2) To build the processes and infrastructure, including staff and investigators, to maximize efficient and
synergistic application of our knowledge and resources; 3) To provide state-of-the-art quantitative analytic
support for research projects; 4) To create and disseminate a library of publicly available web-based technical
assistance material to advance geriatric palliative care and dementia research. Comprised of scientists from
the University of California San Francisco and the Icahn School of Medicine at Mount Sinai, the core creates a
transdisciplinary research team of clinician scientists, health services researchers, economists,
epidemiologists, and biostatisticians with expertise in the novel and complex programming, analytic tools, and
statistical methods that are required to effectively use the HRS and NHATS datasets to examine the complex
issues that arise across the disease course from dementia diagnosis to death and provide answers to relevant
clinical and policy questions in dementia care. RCB is the means through which synergies and efficiencies in
quantitative analytic expertise and database management will be achieved in order to successfully complete
the proposed work in each research project. RCB leaders, Drs. Boscardin and Kelley, have the expertise and
experience to accomplish the RCB’s aims through active collaboration with research project investigators,
consultants and analytic staff - all of whom have extensive expertise in managing and analyzing Medicare
linked HRS and NHATS data. RCB will consolidate database management activities by centralizing
administrative and regulatory functions; creating and cataloging a unified set of variables to be used by all
research projects, merging and cleaning datasets needed for the individual research projects including creating
longitudinal hierarchical datasets for analyses, and performing all associated documentation.
RCB 项目概要
拟议的计划项目“在痴呆症中部署基于人口的高价值纵向数据”
研究(DEVELOP AD RESEARCH)将利用两项全国性、纵向的、基于人口的研究,即
健康与退休研究 (HRS) 和国家健康与老龄化趋势研究 (NHATS),两者均
链接到医疗保险和医疗补助服务中心 (CMS) 索赔和评估文件,以扩展我们的
了解痴呆症的纵向病程以及医学、社会和疾病之间复杂的相互作用
卫生系统因素。研究核心 B (RCB) – 定量分析和数据管理将支持
P01 的目标及其五个研究项目通过四个具体目标: 1) 巩固 HRS、NHATS、
并链接 CMS 数据库管理活动,以促进整个 P01 的科学严谨性和效率;
2) 建立流程和基础设施,包括工作人员和调查人员,以最大限度地提高效率和
协同应用我们的知识和资源; 3)提供最先进的定量分析
支持研究项目; 4) 创建和传播公共可用的基于网络的技术库
促进老年姑息治疗和痴呆症研究的援助材料。由来自的科学家组成
加州大学旧金山分校和西奈山伊坎医学院的核心创建了一个
由临床科学家、卫生服务研究人员、经济学家组成的跨学科研究团队,
流行病学家和生物统计学家,在新颖和复杂的编程、分析工具和
有效使用 HRS 和 NHATS 数据集来检查复杂情况所需的统计方法
从痴呆症诊断到死亡的整个疾病过程中出现的问题,并为相关问题提供答案
痴呆症护理中的临床和政策问题。 RCB 是实现协同效应和效率的手段
将获得定量分析专业知识和数据库管理,以便成功完成
每个研究项目中拟议的工作。 RCB 领导人,博士。 Boscardin 和 Kelley 拥有专业知识和
通过与研究项目调查人员的积极合作来实现 RCB 目标的经验,
顾问和分析人员 - 他们都在管理和分析医疗保险方面拥有丰富的专业知识
关联的 HRS 和 NHATS 数据。 RCB 将通过集中化来整合数据库管理活动
行政和监管职能;创建并编录一组统一的变量以供所有人使用
研究项目,合并和清理各个研究项目所需的数据集,包括创建
用于分析和执行所有相关文档的纵向分层数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AMY STEVES KELLEY其他文献
AMY STEVES KELLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AMY STEVES KELLEY', 18)}}的其他基金
Double Danger: Additive Effects of Dementia and Additional Serious Illness on Patient, Caregiver, and Health System Outcomes
双重危险:痴呆症和其他严重疾病对患者、护理人员和卫生系统结果的叠加影响
- 批准号:
10265434 - 财政年份:2020
- 资助金额:
$ 100.82万 - 项目类别:
Double Danger: Additive Effects of Dementia and Additional Serious Illness on Patient, Caregiver, and Health System Outcomes
双重危险:痴呆症和其他严重疾病对患者、护理人员和卫生系统结果的叠加影响
- 批准号:
10689046 - 财政年份:2020
- 资助金额:
$ 100.82万 - 项目类别:
Midcareer Investigator Award for Patient-Oriented Research in Dementia and Serious Illness
老年痴呆症和严重疾病以患者为导向的研究职业生涯中期研究员奖
- 批准号:
10219949 - 财政年份:2019
- 资助金额:
$ 100.82万 - 项目类别:
Midcareer Investigator Award for Patient-Oriented Research in Dementia and Serious Illness
老年痴呆症和严重疾病以患者为导向的研究职业生涯中期研究员奖
- 批准号:
10413005 - 财政年份:2019
- 资助金额:
$ 100.82万 - 项目类别:
The Burden of Care for Adults with Dementia: Impact on Care Quality and Family Outcomes
成人痴呆症患者的护理负担:对护理质量和家庭结局的影响
- 批准号:
9213704 - 财政年份:2017
- 资助金额:
$ 100.82万 - 项目类别:
The Burden of Care for Adults with Dementia: Impact on Care Quality and Family Outcomes
成人痴呆症患者的护理负担:对护理质量和家庭结局的影响
- 批准号:
10152482 - 财政年份:2017
- 资助金额:
$ 100.82万 - 项目类别:
Improving Care for Older Adults with Serious Illness
改善对患有严重疾病的老年人的护理
- 批准号:
8367362 - 财政年份:2012
- 资助金额:
$ 100.82万 - 项目类别:
Improving Care for Older Adults with Serious Illness
改善对患有严重疾病的老年人的护理
- 批准号:
8529434 - 财政年份:2012
- 资助金额:
$ 100.82万 - 项目类别:
Improving Care for Older Adults with Serious Illness
改善对患有严重疾病的老年人的护理
- 批准号:
8721302 - 财政年份:2012
- 资助金额:
$ 100.82万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 100.82万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 100.82万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 100.82万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 100.82万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 100.82万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 100.82万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 100.82万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 100.82万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 100.82万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 100.82万 - 项目类别:
Continuing Grant