Methods for real-time forecasting and inference during infectious disease outbreaks

传染病爆发期间的实时预测和推断方法

基本信息

  • 批准号:
    10689034
  • 负责人:
  • 金额:
    $ 43.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY A fundamental challenge for the scientific community in the 21st century is learning how to turn this deluge of data into evidence that can inform decision-making about improving health and preventing illness at the individual and population levels. The maturing field of real-time infectious disease forecasting is a prime example of a research area with great potential for leveraging modern analytical methods to maximize the impact on public health. Infectious diseases exact an enormous toll on global health each year. Improved real- time forecasts of infectious disease outbreaks can inform targeted intervention and prevention strategies, such as planning for surge capacity, increasing healthcare staffing, and designing vaccine studies. However we currently have a limited understanding of the best ways to integrate these types of forecasts into real-time public health decision-making. The central research activities of this project are (1) to develop stand-alone and ensemble infectious disease models and methodologies that support forecasting and inference about outbreaks and (2) to expand our collaborative, online platform for collection, dissemination, evaluation, and synthesis of forecasts from different research teams. Additionally, we will continue to develop a suite of open- source educational modules to train researchers and public health officials in developing, validating, and implementing time-series forecasting, with a focus on real-time infectious disease applications.
项目总结

项目成果

期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying the Risk and Cost of Active Monitoring for Infectious Diseases.
量化传染病主动监测的风险和成本。
  • DOI:
    10.1038/s41598-018-19406-x
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Reich,NicholasG;Lessler,Justin;Varma,JayK;Vora,NeilM
  • 通讯作者:
    Vora,NeilM
The Zoltar forecast archive, a tool to standardize and store interdisciplinary prediction research.
  • DOI:
    10.1038/s41597-021-00839-5
  • 发表时间:
    2021-02-11
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Reich NG;Cornell M;Ray EL;House K;Le K
  • 通讯作者:
    Le K
Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States.
  • DOI:
    10.1016/j.ijforecast.2022.06.005
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Ray, Evan L.;Brooks, Logan C.;Bien, Jacob;Biggerstaff, Matthew;Bosse, Nikos I.;Bracher, Johannes;Cramer, Estee Y.;Funk, Sebastian;Gerding, Aaron;Johansson, Michael A.;Rumack, Aaron;Wang, Yijin;Zorn, Martha;Tibshirani, Ryan J.;Reich, Nicholas G.
  • 通讯作者:
    Reich, Nicholas G.
Improving probabilistic infectious disease forecasting through coherence.
  • DOI:
    10.1371/journal.pcbi.1007623
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Gibson GC;Moran KR;Reich NG;Osthus D
  • 通讯作者:
    Osthus D
Identification and evaluation of epidemic prediction and forecasting reporting guidelines: A systematic review and a call for action.
  • DOI:
    10.1016/j.epidem.2020.100400
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Pollett S;Johansson M;Biggerstaff M;Morton LC;Bazaco SL;Brett Major DM;Stewart-Ibarra AM;Pavlin JA;Mate S;Sippy R;Hartman LJ;Reich NG;Maljkovic Berry I;Chretien JP;Althouse BM;Myer D;Viboud C;Rivers C
  • 通讯作者:
    Rivers C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas G Reich其他文献

Nicholas G Reich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas G Reich', 18)}}的其他基金

Influenza Forecasting Center of Excellence at University of Massachusetts Amherst
马萨诸塞大学阿默斯特分校流感预测卓越中心
  • 批准号:
    10219788
  • 财政年份:
    2019
  • 资助金额:
    $ 43.21万
  • 项目类别:
Influenza Forecasting Center of Excellence at University of Massachusetts Amherst
马萨诸塞大学阿默斯特分校流感预测卓越中心
  • 批准号:
    9907415
  • 财政年份:
    2019
  • 资助金额:
    $ 43.21万
  • 项目类别:
Influenza Forecasting Center of Excellence at University of Massachusetts Amherst
马萨诸塞大学阿默斯特分校流感预测卓越中心
  • 批准号:
    10183104
  • 财政年份:
    2019
  • 资助金额:
    $ 43.21万
  • 项目类别:
Influenza Forecasting Center of Excellence at University of Massachusetts Amherst
马萨诸塞大学阿默斯特分校流感预测卓越中心
  • 批准号:
    10086350
  • 财政年份:
    2019
  • 资助金额:
    $ 43.21万
  • 项目类别:
Influenza Forecasting Center of Excellence at University of Massachusetts Amherst
马萨诸塞大学阿默斯特分校流感预测卓越中心
  • 批准号:
    10460892
  • 财政年份:
    2019
  • 资助金额:
    $ 43.21万
  • 项目类别:
Influenza Forecasting Center of Excellence at University of Massachusetts Amherst
马萨诸塞大学阿默斯特分校流感预测卓越中心
  • 批准号:
    10642728
  • 财政年份:
    2019
  • 资助金额:
    $ 43.21万
  • 项目类别:
Statistical methods for real-time forecasts of infectious disease: dynamic time-series and machine learning approaches
传染病实时预测的统计方法:动态时间序列和机器学习方法
  • 批准号:
    10002249
  • 财政年份:
    2016
  • 资助金额:
    $ 43.21万
  • 项目类别:
Methods for real-time forecasting and inference during infectious disease outbreaks
传染病爆发期间的实时预测和推断方法
  • 批准号:
    10205685
  • 财政年份:
    2016
  • 资助金额:
    $ 43.21万
  • 项目类别:
Statistical methods for real-time forecasts of infectious disease: dynamic time-series and machine learning approaches
传染病实时预测的统计方法:动态时间序列和机器学习方法
  • 批准号:
    9142240
  • 财政年份:
    2016
  • 资助金额:
    $ 43.21万
  • 项目类别:
Methods for real-time forecasting and inference during infectious disease outbreaks
传染病爆发期间的实时预测和推断方法
  • 批准号:
    10468060
  • 财政年份:
    2016
  • 资助金额:
    $ 43.21万
  • 项目类别:

相似海外基金

An innovative international payment collection platform using fintech and FPS technology to support SMBs with international transactions that could cut fees by 83%
An%20innovative%20international%20 payment%20collection%20platform%20using%20fintech%20and%20FPS%20technology%20to%20support%20SMBs%20with%20international%20transactions%20that%20could%20cut%20fees%20by%2083%
  • 批准号:
    10098770
  • 财政年份:
    2024
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Collaborative R&D
Take Me and Make It Happen! How-to Books from the Ferguson Collection Glasgow, and Corresponding Holdings at the Herzog August Bibliothek Wolfenbüttel
带我去实现它!
  • 批准号:
    AH/Y007522/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Research Grant
EcoTraceAI: A Novel AI-based Platform for data collection and validation for measuring the environmental impacts of the supply chain in the fashion industry.
EcoTraceAI:一个基于人工智能的新型平台,用于数据收集和验证,用于衡量时尚行业供应链的环境影响。
  • 批准号:
    10114149
  • 财政年份:
    2024
  • 资助金额:
    $ 43.21万
  • 项目类别:
    SME Support
End-to-End Solar Borehole Business Models and Data Collection to Extend Sustainable Access to Energy and Water in Rural Tanzania
端到端太阳能钻孔商业模式和数据收集,以扩大坦桑尼亚农村地区可持续获取能源和水的机会
  • 批准号:
    10074210
  • 财政年份:
    2024
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Collaborative R&D
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
Researching the feasibility of enhancing the productivity of daffodil harvesting through the use of a daffodil collection robotic platform (Daffy)
研究利用水仙花采集机器人平台(Daffy)提高水仙花采收生产力的可行性
  • 批准号:
    10107691
  • 财政年份:
    2024
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Launchpad
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Standard Grant
Local Collection and Treatment of Laser Generated Decontamination Fume
激光净化烟气的本地收集和处理
  • 批准号:
    2902249
  • 财政年份:
    2024
  • 资助金额:
    $ 43.21万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了