Iron Based Coupling Media (IBCM) for MRI-guided Transcranial Ultrasound Surgeries

用于 MRI 引导经颅超声手术的铁基耦合介质 (IBCM)

基本信息

  • 批准号:
    10704562
  • 负责人:
  • 金额:
    $ 46.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-30 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Fatal or impairing neurological diseases, including movement disorders, brain cancers, psychological disorders, epilepsies, malformations, and memory disorders, impose heavy burdens on both individuals and society at large. Transcranial magnetic resonance guided focused ultrasound surgery (tMRgFUS) is an extremely promising, minimally invasive treatment modality for neurological diseases whereby sound waves are focused to a specific region of the brain. Because it is noninvasive, the efficacy of tMRgFUS procedure heavily relies on the accuracy and information content of the guidance technology. This study proposes to improve the treatment efficacy of nearly all tMRgFUS surgeries by eliminating a ubiquitous impediment to accurate and information-rich guidance MRI: the acoustic coupling medium. Interactions between the coupling media and guidance imaging impede tMRgFUS efficacy and translation. For example, while FDA-approved tMRgFUS treatments for essential tremor and Parkinson’s disease can rely on real-time patient feedback to compensate for errors in guidance MR imaging, other tMRgFUS indications cannot access patient feedback because either the patient is unconscious, or the consequences of treatment errors appear only days later. In these cases, guidance imaging errors imposed by the coupling bath cannot be compensated and degrade treatment efficacy To meet this need, our study proposes a dilute, iron-based coupling media (IBCM) that will eliminate coupling- media-induced errors in MRI guidance imaging while maintaining the coupling and cooling functionality critical to acoustic transmission. The specific aims of the study are as follows. Aim 1: Develop novel surface–modified iron oxide nanoparticles for an IBCM. Dilute, aqueous, surface- modified iron oxide nanoparticles can accelerate MRI signal decay such that, during image acquisition, a coupling medium will contribute negligible effects to guidance imaging. However, aqueous nanoparticles also agglomerate and seed treatment-impeding cavitation nucleation in the prefocal acoustic field. This aim will develop novel surface-modified particles that, upon suspension, accelerate MRI signal decay without promoting prefocal nucleation. Aim 2: Investigate the effects of IBCM suspension fluid properties on cavitation nucleation. Fluid properties play a critical role in particle suspension, acoustic coupling, subject cooling, and cavitation nucleation. This aim will investigate cavitation nucleation within the IBCM and how suspension fluid properties, such as pH, temperature, gas content, and flow state, can modify or suppress the nucleation process while maintaining suspension, coupling, and cooling capabilities. Aim 3: Enhance MRI guidance for tMRgFUS through the use of an IBCM. This aim will quantify the value of the IBCM designed in Aims 1 and 2 for tMRgFUS by measuring image quality metrics derived from guidance MRI scans of human subjects. This aim will also develop novel MRI guidance techniques that were previously rendered impossible due to severe image corruptions imposed by the acoustic coupling medium. The resulting IBCM will improve image quality for nearly all guidance techniques employed during, or undergoing development for, tMRgFUS, by rendering the acoustic coupling medium invisible to the MRI scanner without sacrificing necessary acoustic coupling and cooling functionality.
项目总结/摘要 致命或损害性神经系统疾病,包括运动障碍、脑癌、心理 疾病,癫痫,畸形和记忆障碍,给个体和 整个社会。经颅磁共振引导聚焦超声手术(tMRgFUS)是一种 非常有前途的,微创治疗方式的神经系统疾病, 集中在大脑的特定区域。因为它是无创的,tMRgFUS程序的有效性 在很大程度上依赖于制导技术的精度和信息量。 这项研究提出通过消除一种新的治疗方法来提高几乎所有tMRgFUS手术的治疗效果。 精确和信息丰富的引导MRI的普遍障碍:声耦合介质。 耦合介质和引导成像之间的相互作用阻碍了tMRgFUS的有效性和平移。为 例如,虽然FDA批准的tMRgFUS治疗原发性震颤和帕金森病可以依赖于 实时患者反馈以补偿引导MR成像中的错误,其他tMRgFUS适应症不能 访问患者反馈,因为患者无意识,或治疗错误的后果 几天后才出现。在这些情况下,由耦合浴施加的引导成像误差不能被消除。 补偿和降低治疗效果 为了满足这一需求,我们的研究提出了一种稀释的铁基耦合介质(IBCM),它将消除耦合- MRI引导成像中的介质诱导错误,同时保持耦合和冷却功能至关重要 到声波传输。研究的具体目标如下。 目的1:开发新型的表面改性氧化铁纳米粒子用于IBCM。稀释,含水,表面- 改性的氧化铁纳米颗粒可以加速MRI信号衰减,使得在图像采集期间, 耦合介质对制导成像的影响可以忽略。然而,水性纳米颗粒也 附聚物和晶种处理-阻碍预聚焦声场中的空化成核。这一目标将 开发新的表面改性颗粒,悬浮后,加速MRI信号衰减, 促进预聚焦成核。 目的2:研究IBCM悬浮液性质对空化成核的影响。流体 性能在颗粒悬浮、声耦合、受试者冷却和空化中起着关键作用 成核这个目标将调查空化成核内的IBCM和如何悬浮液的性质, 例如pH、温度、气体含量和流动状态,可以改变或抑制成核过程, 保持悬挂、耦合和冷却能力。 目的3:通过使用IBCM增强tMRgFUS的MRI引导。这一目标将量化价值 目标1和目标2中针对tMRgFUS设计的IBCM,通过测量来自指导的图像质量指标 人类受试者的MRI扫描。这一目标还将开发新的MRI引导技术, 由于声学耦合介质造成的严重图像破坏而不可能实现。 由此产生的IBCM将提高图像质量,几乎所有的指导技术期间,或经历 通过使声学耦合介质对MRI扫描仪不可见, 牺牲了必要的声耦合和冷却功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven P Allen其他文献

Steven P Allen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven P Allen', 18)}}的其他基金

Iron Based Coupling Media (IBCM) for MRI-guided Transcranial Ultrasound Surgeries
用于 MRI 引导经颅超声手术的铁基耦合介质 (IBCM)
  • 批准号:
    10415435
  • 财政年份:
    2022
  • 资助金额:
    $ 46.28万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 46.28万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 46.28万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 46.28万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 46.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 46.28万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 46.28万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 46.28万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 46.28万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 46.28万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 46.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了