A scalable service to improve health care quality through precision audit and feedback

通过精确审核和反馈提高医疗保健质量的可扩展服务

基本信息

项目摘要

All health care delivery organizations measure care quality and outcomes, increasingly via electronic clinical quality measures 1 and dashboards 2,3. However, these organizations lack evidence-based strategies for putting their quality and outcome data to work to improve performance 4,5. The most common approach is audit and feedback (A&F), the delivery of clinical performance summaries to providers, which demonstrates potential for large effects on clinical practice 6–8. But A&F too often produces negligible effects 5,9, creating little more than distraction for providers who are fatigued by information chaos 9–11. As currently implemented, A&F is a blunt, “one size fits most” intervention. Each provider in a care setting typically receives identical metrics in a common format, despite a growing recognition that “precisionizing” interventions holds significant promise to improve their impact 12–15. A precision approach to A&F would prioritize display of information in the single metric that, for each recipient, carries the highest value for improving performance, such as when the metric's level drops below a peer benchmark or minimum standard for the first time, revealing an actionable performance gap 16–19. Furthermore, precision A&F would employ an optimal message format (including framing and visual displays 20–24), based on what is known about the recipient and the intended gist meaning being communicated, to improve message interpretation while reducing cognitive processing burden 25–28. Well- established psychological principles, frameworks, and theoretical mechanisms provide a knowledge base to achieve precision A&F 16–19,29–33. From an informatics perspective, precision A&F requires a knowledge-based system that uses psychological theory at its core, but which enables mass customization by giving precedence to configurable knowledge about recipients at the group and individual levels. A precision A&F service employs this knowledge as requirements (necessary characteristics for message acceptability) and preferences (the relative importance of message characteristics) to generate messages that are more likely than a “one size fits most” report to positively influence clinical decision-making and practice. An equally important informatics challenge is to enable widespread improvement through a service for precision A&F at scale. A scalable precision A&F service must function as infrastructure compatible with a wide range of computing environments and supporting a wide range of clinical domains. In his previous NLM K-award, the principal investigator developed and tested a prototype knowledge-based system for precision A&F in email messages in anesthesia care. Preliminary data show that provider preferences are not uniform, suggesting that a platform for computable knowledge is necessary to support scalable precision A&F. The Knowledge Grid platform, developed at the University of Michigan, has been shown to support “precisionizing” for clinical decision support systems 34–36. Based on our prior work, the proposed project will advance the creation of more general services for precision A&F, applying the service in anesthesia care as a demonstration domain.
所有的医疗服务机构都越来越多地通过电子临床来衡量医疗质量和结果

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zachary Landis-Lewis其他文献

Zachary Landis-Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zachary Landis-Lewis', 18)}}的其他基金

A scalable service to improve health care quality through precision audit and feedback
通过精确审核和反馈提高医疗保健质量的可扩展服务
  • 批准号:
    10342937
  • 财政年份:
    2021
  • 资助金额:
    $ 33.15万
  • 项目类别:
A knowledge-based message tailoring system
基于知识的消息定制系统
  • 批准号:
    9765395
  • 财政年份:
    2017
  • 资助金额:
    $ 33.15万
  • 项目类别:

相似海外基金

A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
  • 批准号:
    22KJ0334
  • 财政年份:
    2023
  • 资助金额:
    $ 33.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
  • 批准号:
    23H00770
  • 财政年份:
    2023
  • 资助金额:
    $ 33.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
  • 批准号:
    2410236
  • 财政年份:
    2023
  • 资助金额:
    $ 33.15万
  • 项目类别:
    Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
  • 批准号:
    23K18762
  • 财政年份:
    2023
  • 资助金额:
    $ 33.15万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
  • 批准号:
    900240
  • 财政年份:
    2023
  • 资助金额:
    $ 33.15万
  • 项目类别:
    Collaborative R&D
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
  • 批准号:
    10829529
  • 财政年份:
    2023
  • 资助金额:
    $ 33.15万
  • 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
  • 批准号:
    2346114
  • 财政年份:
    2023
  • 资助金额:
    $ 33.15万
  • 项目类别:
    Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
  • 批准号:
    10828588
  • 财政年份:
    2023
  • 资助金额:
    $ 33.15万
  • 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
  • 批准号:
    MR/X029301/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.15万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
  • 批准号:
    2234506
  • 财政年份:
    2023
  • 资助金额:
    $ 33.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了