Computational Modeling of Lineage Decisions using Single-cell Data
使用单细胞数据进行谱系决策的计算建模
基本信息
- 批准号:10705651
- 负责人:
- 金额:$ 42.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-17 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAlgorithmsBiological ProcessBiologyCell CommunicationCellsChromatinComplexComputer ModelsDataData SetDiseaseEnhancersEventGenetic TranscriptionHeterochromatinHomeostasisIndividualLifeMeasurementModelingNatural regenerationOrganismPhenotypeProcessResearchRoleShapesSignal TransductionTechnologyTherapeuticTissuesTranscriptional Regulationblastomere structurecell typecellular engineeringdata-driven modelembryo cellin vivoinsightmultimodalitynovelsingle-cell RNA sequencingspatiotemporalstem cellstranscriptome sequencingtransmission processwound healing
项目摘要
Project Summary
Cellular differentiation is a fundamental biological process through which complex multi-cellular organisms
develop from single-cell embryos and maintain tissue homeostasis throughout life. Cells integrate signals from
the microenvironment and transmit them to downstream transcriptional regulators, which execute the expression
and chromatin changes to define phenotypic state transitions in differentiation trajectories. Elucidating the
principles of how cells choose their fate, and the path they take to get there, is a major challenge in the field.
Single-cell (sc) RNA sequencing technologies are revolutionizing our understanding of the cellular spatio-
temporal trajectories that shape differentiation. The emergence of additional high throughput, multimodal
technologies such as paired RNA&ATAC-seq, scCUT&Tag and spatial technologies provide unprecedented
opportunities to extract mechanistic insights into the lineage decisions that underly differentiation trajectories.
This proposal aims to exploit this enormous potential by developing sophisticated new algorithms that integrate
single-cell measurements to model and interpret complex biology. Through analysis of multiple single-cell RNA-
seq datasets, we demonstrate that phenotypic asymmetries are a pervasive feature of lineage decisions. We will
develop algorithms to unravel the mechanisms that drive lineage decisions and the underlying asymmetries in
three broad research directions. We will investigate the role of: (i) enhancer priming and transcriptional
regulation, (ii) open and heterochromatin dynamics, and (iii) cell communication in shaping differentiation
trajectories. Our studies will lead to novel insights surrounding cell-autonomous and non-autonomous
mechanisms engaged by cells as they navigate the phenotypic landscape. Successful completion of this
research will provide a robust mechanistic basis to delineate normal differentiation events, decipher
dysregulation of these mechanisms in disease, understand repurposing of differentiation mechanisms in wound
healing and regeneration, and reconstruct differentiation processes in vivo and ex vivo to unlock the therapeutic
potential of cell engineering.
项目摘要
细胞分化是一个基本的生物学过程,通过它复杂的多细胞生物体
从单细胞胚胎发育,并在整个生命过程中保持组织的稳态。细胞整合来自
微环境,并将它们传递给下游转录调节因子,后者执行表达
和染色质变化来定义分化轨迹中的表型状态转变。阐明
细胞如何选择自己的命运,以及它们到达那里的路径,是该领域的一个主要挑战。
单细胞(sc)RNA测序技术正在彻底改变我们对细胞空间的理解,
形成差异的时间轨迹。额外的高通量、多模式
配对RNA和ATAC-seq、scCUT和Tag以及空间技术等技术提供了前所未有的
机会,以提取机制的见解血统的决定,根本分化的轨迹。
该提案旨在通过开发复杂的新算法来利用这一巨大潜力,
单细胞测量来模拟和解释复杂的生物学。通过分析多个单细胞RNA-
seq数据集,我们证明了表型不对称是血统决策的一个普遍特征。我们将
开发算法来解开驱动血统决策和潜在不对称的机制,
三大研究方向。我们将研究的作用:(i)增强子引发和转录
调控,(ii)开放和异染色质动力学,以及(iii)形成分化的细胞通讯
轨迹我们的研究将导致围绕细胞自主和非自主的新见解
细胞在浏览表型景观时所参与的机制。成功完成本
研究将提供一个强大的机制基础,描绘正常分化事件,破译
疾病中这些机制的失调,了解伤口中分化机制的再利用
愈合和再生,并重建体内和离体分化过程,以解锁治疗
细胞工程的潜力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manu N Setty其他文献
Manu N Setty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 42.62万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 42.62万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 42.62万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 42.62万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 42.62万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 42.62万 - 项目类别:
Continuing Grant














{{item.name}}会员




