Predictive Models for Opioid Use Disorder Using Genomic, Social, and Clinical Factors
使用基因组、社会和临床因素的阿片类药物使用障碍的预测模型
基本信息
- 批准号:10797165
- 负责人:
- 金额:$ 19.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAgeBody mass indexChronicClassificationClinicalClinical DataCodeCommunitiesControl GroupsCopy Number PolymorphismDataData SetDatabasesDependenceDevelopmentDiagnosisEnrollmentEnsureEquityEthnic OriginExposure toFamilyFibromyalgiaFutureGenderGenetic MarkersGenomicsGeographyIndividualMachine LearningMedicalMetadataMethodsMinorityModelingOutcomeOutputPainPatientsPerformancePersonsPharmaceutical PreparationsPopulationPopulation HeterogeneityPopulations at RiskPostoperative PainPrevalenceProceduresPublic HealthRaceRecording of previous eventsResearchRiskSamplingSingle Nucleotide PolymorphismSocial EnvironmentSocioeconomic StatusSubstance Use DisorderTechniquesTranslationsUnderrepresented PopulationsUnited StatesVariantVisualizationaddictionchronic painchronic painful conditionclinical careclinical decision supportclinically relevantgenome sequencinggenome wide association studygenomic biomarkergenomic datagenomic profileshealth equalityhealth equityhigh riskillicit opioidimprovedinsightinterestmachine learning modelmachine learning predictionmultiple data typesneural networknovelnovel markeropioid abuseopioid epidemicopioid mortalityopioid therapyopioid useopioid use disorderoutcome predictionpainful neuropathypatient populationpatient stratificationpredictive modelingprescription opioidprescription pain relieverrisk prediction modelrisk stratificationsexsocialsocial factorstime usetoolvectorwhole genome
项目摘要
PROJECT SUMMARY / ABSTRACT
The opioid crisis is a major public health problem in the United States. Over the past two decades, opioid use
and abuse have increased dramatically, with over 5 million people in the United States using prescription
analgesics without medical need or prescription. This has resulted in a significant increase in opioid-related
deaths and addiction rates, with the crisis having a profound impact on individuals, families, and communities.
The proposal aims to develop machine learning-based predictive models for opioid use disorder (OUD)
leveraging genomic, social, and clinical factors. The project will utilize the diverse and equitable AllOfUs
database to identify novel genomic markers associated with OUD in patients with and without co-existing pain
conditions. A significant advantage of the AllOfUs database is the diversity of the patient population and clinical
samples – over 50% of the population is considered underrepresented. This will be achieved through genome-
wide association analysis to identify novel single nucleotide variants, copy number variants, and/or structural
variants. The project will also use machine learning techniques to develop predictive models that classify the risk
of OUD, integrating various data types such as clinical factors, social factors, and genomic data. The project
aims to identify key features that aid in the development of improved models for predicting the risk of OUD.
The first specific aim of the proposal is to identify associations between genomic profiles and OUD. The project
will focus on patients with or without co-existing pain conditions and identify novel genetic markers associated
with OUD in each of these unique patient populations.
The second specific aim is to develop predictive models using machine learning techniques to classify the risk
of OUD. The models will integrate social, clinical, and genomic data to provide clinicians with a tool to risk stratify
their patients.
The project aims to develop robust machine learning-based models predicting OUD and visualize the individual
features' impacts on model performance to provide understanding of which factors are most impactful to
predicting the outcome.
项目摘要/摘要
阿片类药物危机是美国的一个主要公共卫生问题。在过去的二十年里,阿片类药物的使用
滥用情况急剧增加,美国有超过500万人使用处方药
没有医疗需要或处方的止痛药。这导致了与阿片类药物相关的显著增加
死亡率和成瘾率,这场危机对个人、家庭和社区产生了深远的影响。
该提案旨在开发基于机器学习的阿片类药物使用障碍(OUD)预测模型
利用基因组、社会和临床因素。该项目将利用多样化和公平的AllOfU
数据库以确定与伴有和不伴有疼痛的患者的OUD相关的新的基因组标记
条件。AllOfus数据库的一个显著优势是患者群体和临床的多样性
样本--超过50%的人口被认为代表性不足。这将通过基因组来实现-
广泛的关联分析以确定新的单核苷酸变体、拷贝数变体和/或结构
变种。该项目还将使用机器学习技术来开发对风险进行分类的预测模型
集成了各种数据类型,如临床因素、社会因素和基因组数据。该项目
旨在确定有助于开发用于预测OUD风险的改进模型的关键特征。
该提案的第一个具体目标是确定基因组图谱和OUD之间的联系。该项目
将重点放在有或没有共存疼痛状况的患者身上,并确定相关的新遗传标记
在这些独特的患者群体中,每个人都有OUD。
第二个具体目标是使用机器学习技术开发预测模型来对风险进行分类
乌德的。这些模型将整合社会、临床和基因组数据,为临床医生提供风险分层的工具
他们的病人。
该项目旨在开发稳健的基于机器学习的模型,预测OUD并将个人可视化
功能对模型性能的影响,以了解哪些因素对
预测结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodney Allanigue Gabriel其他文献
Rodney Allanigue Gabriel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 19.75万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 19.75万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 19.75万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 19.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 19.75万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 19.75万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 19.75万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 19.75万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 19.75万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




