Chromosome dynamics and organizations necessary for faithful chromosome segregation

忠实染色体分离所需的染色体动力学和组织

基本信息

  • 批准号:
    10797444
  • 负责人:
  • 金额:
    $ 23.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Cell division is a conserved process by which replicated chromosomes are equally partitioned into two daughter cells. Errors in this process often result in gains or losses of chromosomes, known as aneuploidy, which can cause and promote tumors and developmental diseases. During mitotic progression, chromosomes dynamically change their positions in a force-dependent manner via forces generated at kinetochores, macro-molecular protein structures built on centromeric chromatin that serves as platforms for microtubule assembly. While chromosome territories, regions preferentially occupied by specific chromosomes in interphase nuclei, have been established and are known to be involved in gene regulation and genomic protection, the presence and function of chromosome organization in mitosis have not been adequately explored. Our long-term goals are to characterize “mitotic chromosome territories” in mammalian cells and to uncover the function behind spatiotemporal regulation of both chromosome organization and kinetochore dynamics in ensuring faithful chromosome segregation. In this proposal, we will test the hypothesis that there exist chromosome organizations in mitosis as in interphase nuclei using a super-resolution microscopy method we recently developed, which will allow us to identify full sets of individual chromosomes and determine their spatial organization in mammalian cells. If there exist mitotic chromosome territories, we will explore how and when they are established and their evolution throughout mitosis. We also hypothesize that major mitotic defects (unaligned chromosomes, lagging chromosomes, and chromosome bridges) are associated with improper chromosome organization. We will examine this hypothesis by identifying which chromosomes are involved in each defect with increased frequency and determine their positionings. Mitotic cells have two major pathways for correcting mitotic errors, mediated by Aurora A or Aurora B kinases. Both kinases are spatially regulated and phosphorylate a highly conserved microtubule-binding kinetochore protein, Ndc80/Hec1, to destabilize improper microtubule bindings for promotion of error correction and regulation of SAC (spindle assembly checkpoint) activity. Aurora A-mediated error corrections require proximity of erroneous chromosomes to the spindle poles, where Aurora A is concentrated. On the other hand, Aurora B-mediated error corrections depend on dynamic deformations of kinetochores. These suggest that mitotic chromosome positioning, coupled with kinetochore dynamics, orchestrate the cooperation between Aurora A and Aurora B-mediated error correction machineries. We will dissect the contributions of chromosome positioning and kinetochore dynamics towards Aurora A and Aurora B error corrections using force-calibrated microneedles and a semi-automated, quantitative microscopy analysis software that we recently developed called the 3D speckle analyzer (3D-Speckler). Our proposed work will provide new, mechanistic insights into mitotic chromosome organization and its contribution toward ensuring the integrity of chromosome segregation, which will contribute towards developing better therapeutic and detection strategies for cancer and developmental diseases for improved patient outcomes.
项目摘要 细胞分裂是一个保守的过程,复制的染色体平均分成两个子代 细胞这个过程中的错误通常会导致染色体的获得或丢失,称为非整倍体,这可能会导致 导致和促进肿瘤和发育性疾病。在有丝分裂过程中,染色体动态地 通过在动粒、大分子 蛋白质结构建立在着丝粒染色质上,作为微管组装的平台。而 染色体区域,在间期核中优先被特定染色体占据的区域, 已经建立并已知参与基因调控和基因组保护, 染色体组织在有丝分裂中的作用尚未充分研究。我们的长期目标是 描述哺乳动物细胞中的“有丝分裂染色体区域”,并揭示其背后的功能。 染色体组织和动粒动力学的时空调节,以确保忠实 染色体分离在这个建议中,我们将测试存在染色体组织的假设, 在有丝分裂间期核中使用我们最近开发的超分辨率显微镜方法, 使我们能够识别完整的个体染色体,并确定它们在哺乳动物中的空间组织。 细胞如果存在有丝分裂染色体区域,我们将探讨它们是如何建立的,何时建立的,以及它们的 有丝分裂的进化我们还假设,主要的有丝分裂缺陷(染色体不对齐,滞后, 染色体和染色体桥)与染色体结构不正确有关。我们将 通过确定哪些染色体参与了频率增加的每种缺陷来检验这一假设 并确定他们的位置有丝分裂细胞有两种主要的纠正有丝分裂错误的途径, 由极光A或极光B激酶。这两种激酶都是空间调控的, 微管结合动粒蛋白,Ndc 80/Hec 1,使不适当的微管结合不稳定, 促进错误纠正和SAC(纺锤体组装检查点)活性的调节。Aurora A介导 错误校正需要错误染色体接近纺锤体极点,在那里极光A是 集中另一方面,极光B介导的误差校正取决于 动粒这些表明,有丝分裂染色体定位,加上动粒动力学, 协调Aurora A和Aurora B介导的纠错机制之间的合作。我们将 剖析染色体定位和动粒动力学对极光A和极光B的贡献 使用力校准微针和半自动定量显微镜分析进行误差校正 我们最近开发的软件称为3D散斑分析仪(3D-Speckler)。我们提出的工作将 为有丝分裂染色体的组织及其对确保细胞分裂的贡献提供了新的,机械的见解。 染色体分离的完整性,这将有助于开发更好的治疗和检测 癌症和发育疾病的战略,以改善患者的结果。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semi-automated 3D fluorescence speckle analyzer (3D-Speckler) for microscope calibration and nanoscale measurement.
Extended regulation interface coupled to the allosteric network and disease mutations in the PP2A-B56δ holoenzyme.
扩展的调节接口耦合到 PP2A-B56δ 全酶的变构网络和疾病突变。
  • DOI:
    10.1101/2023.03.09.530109
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wu,Cheng-Guo;Balakrishnan,VijayaK;Parihar,PankajS;Konovolov,Kirill;Chen,Yu-Chia;Merrill,RonaldA;Wei,Hui;Carragher,Bridget;Sundaresan,Ramya;Cui,Qiang;Wadzinski,BrianE;Swingle,MarkR;Musiyenko,Alla;Honkanen,Richard;Chung,Wen
  • 通讯作者:
    Chung,Wen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aussie Suzuki其他文献

Aussie Suzuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aussie Suzuki', 18)}}的其他基金

Chromosome dynamics and organizations necessary for faithful chromosome segregation
忠实染色体分离所需的染色体动力学和组织
  • 批准号:
    10684176
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:

相似海外基金

Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
  • 批准号:
    10887038
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
  • 批准号:
    10877239
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
  • 批准号:
    MR/X007979/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Research Grant
Cell competition, aneuploidy, and aging
细胞竞争、非整倍性和衰老
  • 批准号:
    10648670
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
  • 批准号:
    10735074
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
  • 批准号:
    10538074
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
  • 批准号:
    10537275
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
  • 批准号:
    10661533
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
  • 批准号:
    10366610
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
  • 批准号:
    10467260
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了