The dynamics and underlying mechanisms controlling cell size and canonical Wnt signaling
控制细胞大小和经典 Wnt 信号传导的动力学和潜在机制
基本信息
- 批准号:10797294
- 负责人:
- 金额:$ 13.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-22 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBiochemistryBiological AssayBiologyCell CycleCell Differentiation processCell SizeCell physiologyCellsChemicalsChimeric ProteinsComplexComputersCoupledCryoelectron MicroscopyCultured CellsDevelopmentDevelopmental GeneDiseaseDrynessEnzymesEventFailureFeedbackFutureGrowthGrowth FactorHomeostasisIn VitroKineticsLipidsMalignant NeoplasmsMammalian CellMeasuresMetabolismMethodsMicroscopyMusNutrientNutritionalOrganPathologyPathway interactionsPhasePhysiologicalPhysiologyPositioning AttributeProliferatingPropertyProtein BiosynthesisProteinsRaman Spectrum AnalysisScienceStructureSystemTimeTissuesTranscriptional RegulationWNT Signaling Pathwaycell growthfluorescence imagingmathematical modelpharmacologicpreservationprotein degradationprotein purificationresponsescaffoldsingle moleculetool
项目摘要
Project Summary/ Abstract
Some of the most challenging problems in biology and disease concern dynamical features of the
cell. The Wnt pathway is one of the most important developmental and cancer pathways.
Control of growth and size is a universal property of all cells, whose dynamics are hard to
measure accurately and poorly understood. The Wnt pathway is made up of conserved scaffolds
and enzymes that control the stability of catenin, which regulates important developmental
genes. Cell growth control, responds to metabolism and differentiation in complex physiological
circuits. Components of the Wnt pathway have been long known but how the Wnt signal
traverses several kinetic steps before interacting with the catenin is still unclear. We are trying
to understand the Wnt pathway from: 1) single molecule imaging of fluorescent chimeric
proteins knocked into the endogenous loci, thereby preserving the exact level of expression and
transcriptional regulation and 2) the development of an in vitro system that preserves the
kinetic response of the downstream events of the pathway. From the in vitro system we can
assay purified proteins, and assess their activity. We can quickly isolate complexes and study
their posttranslational state, and potentially determine the structure of kinetically important
forms by Cryo-electron microscopy. We have in the past and will in the future combine
mathematical modeling with biochemistry to identify key features of this system. For cell size
control we have used quantitative methods to define the cell’s structural and physiological state.
We found that mammalian cell size is controlled, not just at G1/S, but throughout the cell cycle
by feedback from cell size onto growth rate. How cells know how large they are and regulate
their growth is still a mystery. Further understanding will be facilitated by two tools we
developed: computer enhanced Quantitative Phase microscopy (ceQPM) and Normalized
Raman Imaging (NoRI). The former is the most accurate method for measuring cell dry mass
for attached cells. The latter can also independently measure protein and lipid mass densities
and total mass of cells, even deep within tissues. Furthermore, NoRI can measure the rate of
protein synthesis and degradation at the single cell level within tissues or in culture in real time.
We will use ceQPM and NoRI simultaneously with cultured cells to measure protein synthesis
and turnover as a function of cell size and as a function of position in the cell cycle, coupled with
pharmacological, growth factor, and nutrient perturbation to identify pathways involved in
sensing size and regulating growth. The mechanism of cell size control in differentiated organs
under different nutritional states in mouse tissues will also be explored with NoRI.
项目总结/摘要
生物学和疾病中一些最具挑战性的问题涉及微生物系统的动力学特征。
cell. Wnt通路是最重要的发育和癌症通路之一。
对生长和大小的控制是所有细胞的普遍属性,其动力学很难被理解。
准确测量,不太了解。Wnt通路由保守的支架组成
和控制β-catenin稳定性的酶,β-catenin调节重要的发育
基因.细胞生长控制,对复杂生理过程中的代谢和分化作出反应,
电路. Wnt信号通路的组成部分早已为人所知,但Wnt信号是如何通过
在与β-catenin相互作用之前经过几个动力学步骤仍然不清楚。我们正在努力
为了从以下方面理解Wnt途径:1)荧光嵌合体的单分子成像,
敲入内源基因座的蛋白质,从而保持精确的表达水平,
转录调控和2)在体外系统的发展,保留
该途径的下游事件的动力学响应。从体外系统中我们可以
分析纯化的蛋白质,并评估其活性。我们可以快速分离复合物并进行研究
它们的翻译后状态,并可能决定结构的动力学重要的
冷冻电子显微镜下的形态。我们过去和将来都将联合收割机
数学建模与生物化学,以确定该系统的关键特征。对于像元大小
控制我们已经使用定量方法来定义细胞的结构和生理状态。
我们发现,哺乳动物细胞的大小不仅在G1/S期,而且在整个细胞周期中都受到控制
通过细胞大小对生长速率的反馈。细胞如何知道它们有多大并调节
它们的生长仍然是个谜。我们将通过两个工具来促进进一步的理解,
开发:计算机增强定量相位显微镜(ceQPM)和归一化
拉曼成像(NoRI)。前者是测量细胞干质量最准确的方法
for attached附着cells细胞.后者还可以独立测量蛋白质和脂质质量密度
以及细胞的总质量,甚至是组织深处的细胞。此外,NoRI可以测量
在组织内或培养物中真实的实时地在单细胞水平上的蛋白质合成和降解。
我们将同时使用ceQPM和NoRI与培养的细胞来测量蛋白质合成
和周转作为细胞大小的函数和作为细胞周期中位置的函数,
药理学,生长因子和营养扰动,以确定参与
感知大小和调节生长。分化器官中细胞大小控制的机制
在不同的营养状态下,小鼠组织中的NoRI也将被探索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARC Wallace KIRSCHNER其他文献
MARC Wallace KIRSCHNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARC Wallace KIRSCHNER', 18)}}的其他基金
The dynamics and underlying mechanisms controlling cell size and canonical Wnt signaling
控制细胞大小和经典 Wnt 信号传导的动力学和潜在机制
- 批准号:
10670148 - 财政年份:2022
- 资助金额:
$ 13.3万 - 项目类别:
The dynamics and underlying mechanisms controlling cell size and canonical Wnt signaling
控制细胞大小和经典 Wnt 信号传导的动力学和潜在机制
- 批准号:
10405995 - 财政年份:2022
- 资助金额:
$ 13.3万 - 项目类别:
Studies of Direct Pluripotent Stem Cell Programming
直接多能干细胞编程的研究
- 批准号:
9091998 - 财政年份:2016
- 资助金额:
$ 13.3万 - 项目类别:
Systems analysis of cell type differentiation in xenopus development
非洲爪蟾发育中细胞类型分化的系统分析
- 批准号:
8341917 - 财政年份:2012
- 资助金额:
$ 13.3万 - 项目类别:
相似海外基金
REU Site: Summer Undergraduate Research in Chemistry and Biochemistry at Miami University
REU 网站:迈阿密大学化学与生物化学暑期本科生研究
- 批准号:
2349468 - 财政年份:2024
- 资助金额:
$ 13.3万 - 项目类别:
Continuing Grant
REU Site: Research Experiences for Community College Students in Chemistry and Biochemistry at Texas A&M University-Commerce
REU 网站:德克萨斯 A 社区学院化学和生物化学专业学生的研究经验
- 批准号:
2349522 - 财政年份:2024
- 资助金额:
$ 13.3万 - 项目类别:
Standard Grant
Supporting Talented, Low-Income Undergraduate and Graduate Students in Chemistry and Biochemistry through Career Explorations, Research Experiences, and Scholarships
通过职业探索、研究经验和奖学金支持化学和生物化学领域有才华的低收入本科生和研究生
- 批准号:
2322722 - 财政年份:2024
- 资助金额:
$ 13.3万 - 项目类别:
Standard Grant
Conference: Active Learning Communities in Biochemistry
会议:生物化学主动学习社区
- 批准号:
2411535 - 财政年份:2024
- 资助金额:
$ 13.3万 - 项目类别:
Standard Grant
Hydrogen and carbon dioxide biochemistry in the bacterial energy-transducing membrane.
细菌能量转换膜中的氢气和二氧化碳生物化学。
- 批准号:
BB/Y004302/1 - 财政年份:2024
- 资助金额:
$ 13.3万 - 项目类别:
Research Grant
ORCC: The Role of Betaine Lipid Biochemistry in Coral Thermal Tolerance
ORCC:甜菜碱脂质生物化学在珊瑚耐热性中的作用
- 批准号:
2307516 - 财政年份:2023
- 资助金额:
$ 13.3万 - 项目类别:
Continuing Grant
Supporting low-income student success in STEM through community, mentoring, and immersive research in biology and biochemistry
通过生物学和生物化学领域的社区、指导和沉浸式研究,支持低收入学生在 STEM 方面取得成功
- 批准号:
2221216 - 财政年份:2023
- 资助金额:
$ 13.3万 - 项目类别:
Standard Grant
Biochemistry of Eukaryotic Replication Fork and DNA Repair
真核复制叉的生物化学和 DNA 修复
- 批准号:
10550045 - 财政年份:2023
- 资助金额:
$ 13.3万 - 项目类别:
In vivo 2-photon imaging of retinal biochemistry before and after retinal organoid transplantation
视网膜类器官移植前后视网膜生物化学的体内2光子成像
- 批准号:
10643273 - 财政年份:2023
- 资助金额:
$ 13.3万 - 项目类别:














{{item.name}}会员




