Subtyping complex phenotypes via constrastive learning by leveraging electronic health records
利用电子健康记录通过对比学习对复杂表型进行亚型分类
基本信息
- 批准号:10799083
- 负责人:
- 金额:$ 42.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAsthmaBreast Cancer PatientCharacteristicsClassificationClinicalComplexDataDatabasesDementiaDiabetes MellitusDiagnosisDimensionsDiseaseDrug InteractionsElectronic Health RecordEquityEstrogen ReceptorsEthnic OriginGeneticGenomicsGraves&apos DiseaseHashimoto DiseaseHealth SurveysHealthcareHeterogeneityHypertensionHyperthyroidismHypothyroidismIndividualInsulinLearningLocationMedicalMedicineMental disordersMethodsModelingObesityPatientsPatternPhenotypePopulationPopulation HeterogeneityPredispositionProbabilityProceduresProcessPrognosisRaceReportingRisk FactorsSourceStratificationStructureSurfaceTechniquesTimeTrainingUndifferentiatedVariantautoimmune thyroid diseasecell typeclinical heterogeneityclinical riskclinically relevantcohortcomputer frameworkdisorder subtypeestrophilinhigh dimensionalityimprovedlearning strategymultidimensional dataneoplastic cellnovelnovel strategiesphenotypic dataportabilityprecision medicinepredictive modelingpublic health relevanceracial populationresponsesuccess
项目摘要
Summary
A critical step towards realizing the promise of precision medicine is the identification of biologically- and
clinically-relevant disease subtypes. Disease subtypes are suspected yet unknown or not fully characterized
for many conditions, including obesity, diabetes, hypertension, asthma, dementia, and psychiatric disorders.
The existence of “phenotypic heterogeneity” has practical and clinical implications: undifferentiated cases of a
disease may represent the action of a variety of underlying causal processes, each of which may have a
different prognosis or respond to a different treatment. Existing phenotype subtyping methods predominantly
rely on the idea that applying clustering or dimensionality reduction techniques to high-dimensional data from
patients with a given condition may reveal explanatory patterns that correspond to disease subtypes. This
implicitly assumes that biologically meaningful subtypes can be captured by the dominant axes of variation in
the data. Yet, the most dominant sources of variation are expected to be independent of biologically
meaningful subtypes in many settings. In this project, a novel contrastive learning method is proposed for
learning a heterogeneity gradient of variation that is specific to cases of a given condition and cannot be found
in matched controls. Electronic health records (EHR) and survey information from the rich All of Us database is
expected to span the spectrum of clinical heterogeneity across common complex diseases, which can inform
the proposed method about meaningful sub-phenotypic variation for many diseases. The subtypes identified
will be evaluated within the All of Us database and replicated using three external EHR cohorts for subtype-
specific genetic effects, clinical risk factors, and clinical trajectories. Finally, EHR-based models are notoriously
known for their susceptibility to poor generalization on out-of-distribution data that represent locations,
populations, medical practices, or other factors that were not represented in the training data. This challenge
will be addressed by developing a domain generalization framework, which will allow learning disease
subtypes that are generalizable across demographic characteristics, including location, ancestry, ethnicity, and
race, which is essential to achieve equitable precision medicine and facilitate the integration of predictive
models in healthcare pipelines.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elior Rahmani其他文献
Elior Rahmani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Defining new asthma phenotypes using high-dimensional data
使用高维数据定义新的哮喘表型
- 批准号:
2901112 - 财政年份:2024
- 资助金额:
$ 42.84万 - 项目类别:
Studentship
Air pollution and Asthma in Canada: Projections of burden and the value of climate adaptation strategies
加拿大的空气污染和哮喘:负担预测和气候适应战略的价值
- 批准号:
485322 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Operating Grants
Data-driven model links BMIz to gene expression in pediatric asthma
数据驱动模型将 BMIz 与小儿哮喘基因表达联系起来
- 批准号:
493135 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
BIOlogic drug safety and effectiveness interNational pharmacoepidemiologIC study in pregnant women with autoimmune disorders and asthma and their children (BIONIC)
患有自身免疫性疾病和哮喘的孕妇及其子女的生物药物安全性和有效性国际药物流行病学研究(BIONIC)
- 批准号:
493526 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Operating Grants
Engaging Patient and Caregivers in Using Patient-reported Outcomes Measures in Pediatric Clinical Care for Asthma
让患者和护理人员参与儿科哮喘儿科临床护理中患者报告的结果测量
- 批准号:
495593 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Basophilic oncostatin M fuels nociceptor neuron-induced asthma
嗜碱性制瘤素 M 促进伤害感受器神经元诱发哮喘
- 批准号:
485504 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Salary Programs
Mechanistic Study of Inspiratory Training in Childhood Asthma
儿童哮喘吸气训练机制研究
- 批准号:
10637048 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Early life exposure to metal mixtures: impacts on asthma and lungdevelopment
生命早期接触金属混合物:对哮喘和肺部发育的影响
- 批准号:
10678307 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Lung resident Treg suppression of Th2 resident memory T cells in allergic asthma
过敏性哮喘中肺常驻 Treg 对 Th2 常驻记忆 T 细胞的抑制
- 批准号:
10664599 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Obesity and Childhood Asthma: The Role of Adipose Tissue
肥胖和儿童哮喘:脂肪组织的作用
- 批准号:
10813753 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:














{{item.name}}会员




