Subtyping complex phenotypes via constrastive learning by leveraging electronic health records
利用电子健康记录通过对比学习对复杂表型进行亚型分类
基本信息
- 批准号:10799083
- 负责人:
- 金额:$ 42.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAsthmaBreast Cancer PatientCharacteristicsClassificationClinicalComplexDataDatabasesDementiaDiabetes MellitusDiagnosisDimensionsDiseaseDrug InteractionsElectronic Health RecordEquityEstrogen ReceptorsEthnic OriginGeneticGenomicsGraves&apos DiseaseHashimoto DiseaseHealth SurveysHealthcareHeterogeneityHypertensionHyperthyroidismHypothyroidismIndividualInsulinLearningLocationMedicalMedicineMental disordersMethodsModelingObesityPatientsPatternPhenotypePopulationPopulation HeterogeneityPredispositionProbabilityProceduresProcessPrognosisRaceReportingRisk FactorsSourceStratificationStructureSurfaceTechniquesTimeTrainingUndifferentiatedVariantautoimmune thyroid diseasecell typeclinical heterogeneityclinical riskclinically relevantcohortcomputer frameworkdisorder subtypeestrophilinhigh dimensionalityimprovedlearning strategymultidimensional dataneoplastic cellnovelnovel strategiesphenotypic dataportabilityprecision medicinepredictive modelingpublic health relevanceracial populationresponsesuccess
项目摘要
Summary
A critical step towards realizing the promise of precision medicine is the identification of biologically- and
clinically-relevant disease subtypes. Disease subtypes are suspected yet unknown or not fully characterized
for many conditions, including obesity, diabetes, hypertension, asthma, dementia, and psychiatric disorders.
The existence of “phenotypic heterogeneity” has practical and clinical implications: undifferentiated cases of a
disease may represent the action of a variety of underlying causal processes, each of which may have a
different prognosis or respond to a different treatment. Existing phenotype subtyping methods predominantly
rely on the idea that applying clustering or dimensionality reduction techniques to high-dimensional data from
patients with a given condition may reveal explanatory patterns that correspond to disease subtypes. This
implicitly assumes that biologically meaningful subtypes can be captured by the dominant axes of variation in
the data. Yet, the most dominant sources of variation are expected to be independent of biologically
meaningful subtypes in many settings. In this project, a novel contrastive learning method is proposed for
learning a heterogeneity gradient of variation that is specific to cases of a given condition and cannot be found
in matched controls. Electronic health records (EHR) and survey information from the rich All of Us database is
expected to span the spectrum of clinical heterogeneity across common complex diseases, which can inform
the proposed method about meaningful sub-phenotypic variation for many diseases. The subtypes identified
will be evaluated within the All of Us database and replicated using three external EHR cohorts for subtype-
specific genetic effects, clinical risk factors, and clinical trajectories. Finally, EHR-based models are notoriously
known for their susceptibility to poor generalization on out-of-distribution data that represent locations,
populations, medical practices, or other factors that were not represented in the training data. This challenge
will be addressed by developing a domain generalization framework, which will allow learning disease
subtypes that are generalizable across demographic characteristics, including location, ancestry, ethnicity, and
race, which is essential to achieve equitable precision medicine and facilitate the integration of predictive
models in healthcare pipelines.
总结
实现精准医疗承诺的关键一步是识别生物学上和生物学上的
临床相关疾病亚型。疑似疾病亚型尚不清楚或未完全表征
用于许多疾病,包括肥胖症、糖尿病、高血压、哮喘、痴呆和精神疾病。
“表型异质性”的存在具有实际和临床意义:
疾病可能代表各种潜在的因果过程的作用,其中每一个都可能有一个
不同的预后或对不同治疗的反应。现有的表型分型方法主要是
依赖于将聚类或降维技术应用于高维数据的想法,
具有给定状况的患者可以揭示对应于疾病亚型的解释性模式。这
隐含地假设生物学上有意义的亚型可以被变异的主导轴捕获,
数据。然而,最主要的变异来源预计是独立的生物学
有意义的子类型。在这个项目中,提出了一种新的对比学习方法,
学习特定于给定条件的情况并且不能被发现的变化的异质性梯度
在匹配的对照组中。电子健康记录(EHR)和来自丰富的All of Us数据库的调查信息,
预计将跨越常见复杂疾病的临床异质性谱,这可以为
所提出的方法对许多疾病的有意义的亚表型变异。已识别的亚型
将在All of Us数据库中进行评估,并使用三个外部EHR队列进行复制,用于亚型-
特定的遗传效应、临床风险因素和临床轨迹。最后,基于EHR的模型
众所周知,它们对表示位置的分布外数据的概括性较差,
人口、医疗实践或其他因素,这些因素在训练数据中没有表现出来。这一挑战
将通过开发一个领域泛化框架来解决,这将允许学习疾病
亚型,可概括的人口统计学特征,包括位置,祖先,种族,
种族,这是实现公平的精准医疗和促进整合预测
医疗保健管道中的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elior Rahmani其他文献
Elior Rahmani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Defining new asthma phenotypes using high-dimensional data
使用高维数据定义新的哮喘表型
- 批准号:
2901112 - 财政年份:2024
- 资助金额:
$ 42.84万 - 项目类别:
Studentship
Basophilic oncostatin M fuels nociceptor neuron-induced asthma
嗜碱性制瘤素 M 促进伤害感受器神经元诱发哮喘
- 批准号:
485504 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Salary Programs
Engaging Patient and Caregivers in Using Patient-reported Outcomes Measures in Pediatric Clinical Care for Asthma
让患者和护理人员参与儿科哮喘儿科临床护理中患者报告的结果测量
- 批准号:
495593 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Air pollution and Asthma in Canada: Projections of burden and the value of climate adaptation strategies
加拿大的空气污染和哮喘:负担预测和气候适应战略的价值
- 批准号:
485322 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Operating Grants
Data-driven model links BMIz to gene expression in pediatric asthma
数据驱动模型将 BMIz 与小儿哮喘基因表达联系起来
- 批准号:
493135 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
BIOlogic drug safety and effectiveness interNational pharmacoepidemiologIC study in pregnant women with autoimmune disorders and asthma and their children (BIONIC)
患有自身免疫性疾病和哮喘的孕妇及其子女的生物药物安全性和有效性国际药物流行病学研究(BIONIC)
- 批准号:
493526 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Operating Grants
A Novel Approach to Target Neutrophilic Airway Inflammation and Airway Hyperresponsiveness in Therapy-Resistant (Refractory) Asthma.
一种针对难治性哮喘中性粒细胞性气道炎症和气道高反应性的新方法。
- 批准号:
10659658 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Treating Maternal Depression in an Urban Community-Based Pediatric Asthma Clinic: Targeting Maternal Mood, Child Asthma Outcomes, and Health Disparities
在城市社区小儿哮喘诊所治疗孕产妇抑郁症:针对孕产妇情绪、儿童哮喘结果和健康差异
- 批准号:
10723233 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Improving Prediction of Asthma-related Outcomes with Genetic Ancestry-informed Lung Function Equations
利用遗传祖先信息的肺功能方程改善哮喘相关结果的预测
- 批准号:
10723861 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:
Prenatal Fatty Acid Supplementation and Early Childhood Asthma and Atopy in Black American Families
美国黑人家庭产前脂肪酸补充剂与儿童早期哮喘和特应性
- 批准号:
10586398 - 财政年份:2023
- 资助金额:
$ 42.84万 - 项目类别:














{{item.name}}会员




