Predicting the Absence of Serious Bacterial Infection in the PICU
预测 PICU 中不存在严重细菌感染
基本信息
- 批准号:10806039
- 负责人:
- 金额:$ 16.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcute Renal Failure with Renal Papillary NecrosisAdmission activityAdolescentAdverse effectsAntibiotic ResistanceAntibiotic TherapyAntibioticsAutomobile DrivingAwardBacterial InfectionsBiologicalBiometryCalibrationChildChildhoodChildhood InjuryClinicalClinical DataClinical Decision Support SystemsCritical IllnessCritically ill childrenDataData SetDecision MakingDevelopmentEducationElectronic Health RecordEquityEthicsEvaluationExclusionFunctional disorderFundingGoalsHarm ReductionHigh PrevalenceHospitalsHourInfectionInstitutionInterviewKnowledgeLaboratoriesLeftLength of StayLifeMachine LearningMentorsMethodsMissionModelingMulticenter TrialsNational Institute of Child Health and Human DevelopmentOrganOutcomePatient-Focused OutcomesPatientsPatternPediatric HospitalsPediatric Intensive Care UnitsPerformancePredictive ValueProbabilityProviderPseudomembranous ColitisPublic HealthQualifyingResearchResearch DesignResearch PersonnelRetrospective cohortRiskSepsisSiteSystemTechnical ExpertiseTestingTimeTranscriptTrustUnited States National Institutes of HealthWorkcareer developmentclinical decision supportcohortcomputer human interactiondesigndisabilityexperienceimprovedimproved outcomeinnovationmachine learning methodmachine learning modelmachine learning predictionmodel designmortalitymultidisciplinarynovelpediatric sepsispredictive modelingpredictive toolsprospectivesevere injuryskillssupport toolstooltool developmenttreatment durationuser centered design
项目摘要
Proposal Summary
There are no validated systems for identifying children without serious bacterial infection (SBI) upon admission
to a pediatric ICU (PICU). Given the high prevalence of SBI among critically ill children (up to 46%) and risks
associated with delayed antibiotic administration, nearly 50% of children without SBI receive antibiotics while
microbiologic studies are pending. However, antibiotics can have adverse effects including acute kidney injury,
clostridium difficile colitis, and development of antibiotic resistance. The long-term goal of this research is to
validate and disseminate machine learning (ML)-based clinical decision support (CDS) tools able to improve
PICU antibiotic decision-making thereby reducing antibiotic associated harm among critically ill children. In
prior work, Dr. Martin developed ML-based predictive models, which use electronic health record (EHR) inputs
(vital sign, laboratory, and other clinical data), to accurately identify children without SBI upon PICU admission
in a single center retrospective cohort. The central hypothesis is that these models will demonstrate similar
robust performance during prospective and multicenter evaluations, and that an antibiotic decisional needs
analysis of PICU clinicians will inform the optimal design of model-based CDS tools. The central hypothesis will
be tested via three aims: 1) prospectively evaluate two SBI predictive models within a single center EHR and
determine the potential effect on antibiotic-days per child; 2) evaluate ML model generalizability by testing
them in a multicenter EHR cohort; and 3) perform a multicenter, multidisciplinary antibiotic decisional needs
analysis of PICU clinicians to facilitate user-centered design of equitable model-based CDS tools. In Aim 1, two
SBI predictive models will be prospectively evaluated in silent fashion (predictions not revealed to clinicians) at
a single center over two years. Model predictions will be compared to patient SBI outcomes to determine their
negative predictive value and potential to reduce unnecessary antibiotics. In Aim 2, the same models will be
applied to a retrospective dataset of six US children's hospital PICUs (~178,000 encounters over 8+ years) to
assess generalizability by determining each model's negative predictive value and potential to reduce
unnecessary antibiotics. In Aim 3, a rigorous qualitative content analysis of PICU clinician interviews from five
institutions will identify the values driving antibiotic decision-making and enable user-centered design of model-
based CDS tools. The research is innovative because it involves development of the first clinically validated
system for excluding SBI at PICU admission and uses a ML approach to do so. The research is significant as it
accelerates development of generalizable antibiotic decision-making tools to assist PICU clinicians in safely
minimizing unnecessary antibiotics and associated harm. The educational component of this application will
allow Dr. Martin to attain expertise in biostatistics, probability, ML bias, and study design, as well as technical
skills in programming, ML, and CDS. This will allow him to transition to independence and make him uniquely
qualified to develop, validate, and implement CDS tools able to improve the outcomes of critically ill children.
建议书摘要
目前还没有有效的系统来识别入院时没有严重细菌感染(SBI)的儿童
送到儿科ICU(PICU)。考虑到危重儿童中SBI的高患病率(高达46%)和风险
与抗生素给药延迟有关,近50%的没有SBI的儿童接受抗生素治疗,而
微生物学研究正在进行中。然而,抗生素可能会产生不良影响,包括急性肾脏损伤,
艰难梭状芽孢杆菌结肠炎与抗生素耐药性的发展。这项研究的长期目标是
验证和传播基于机器学习(ML)的临床决策支持(CDS)工具能够改进
PICU抗生素决策,从而减少危重儿童中与抗生素相关的伤害。在……里面
在之前的工作中,Martin博士开发了基于ML的预测模型,该模型使用电子健康记录(EHR)输入
(生命体征、实验室和其他临床数据),以便在PICU入院时准确识别没有SBI的儿童
在一个单一的中心回顾队列中。中心假设是,这些模型将证明类似的
在前瞻性和多中心评估期间的稳健表现,以及抗生素决策需要
对PICU临床医生的分析将为基于模型的CDS工具的优化设计提供信息。中心假说将
通过三个目标进行测试:1)前瞻性评估单个中心EHR内的两个SBI预测模型
确定对每个孩子的抗生素使用天数的潜在影响;2)通过测试评估ML模型的泛化能力
他们在多中心EHR队列中;以及3)执行多中心、多学科的抗生素决策需求
分析PICU临床医生,促进以用户为中心的基于公平模型的CDS工具的设计。在目标1中,2
SBI预测模型将在以下时间以无声方式(未向临床医生透露的预测)进行前瞻性评估
在两年的时间里只有一个中心。模型预测将与患者的SBI结果进行比较,以确定其
阴性预测价值和减少不必要抗生素的潜力。在目标2中,相同的模型将被
应用于6个美国儿童医院PICU的回顾数据集(8年多来约17.8万次就诊)
通过确定每个模型的负面预测值和降低的可能性来评估泛化能力
不必要的抗生素。在目标3中,对来自五个PICU临床医生的访谈进行了严格的定性内容分析
机构将确定推动抗生素决策的价值观,并支持以用户为中心的模型设计-
基于CDS工具。这项研究具有创新性,因为它涉及到第一个经过临床验证的
在PICU入院时排除SBI的系统,并使用ML方法来做到这一点。这项研究具有重要意义,因为它
加快开发可推广的抗生素决策工具,以帮助PICU临床医生安全
将不必要的抗生素和相关危害降至最低。此应用程序的教育组件将
允许马丁博士获得生物统计学、概率、ML偏倚、研究设计以及技术方面的专业知识
具备编程、ML和CDS方面的技能。这将使他过渡到独立,并使他成为独一无二的
有资格开发、验证和实施能够改善危重儿童结局的CDS工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Blake Martin其他文献
Blake Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}














{{item.name}}会员




