Bioinstructive Scaffolds for Potent and Affordable CAR-T Cell Therapy Against Brain Tumors
用于有效且经济实惠的针对脑肿瘤的 CAR-T 细胞疗法的生物指导支架
基本信息
- 批准号:10800468
- 负责人:
- 金额:$ 58.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AftercareAlginatesAntibodiesAntigensB lymphoid malignancyBiocompatible MaterialsBloodBlood - brain barrier anatomyBrainBrain NeoplasmsCAR T cell therapyCD276 geneCD28 geneCellsClinicClinicalClinical TrialsClinical Trials DesignDataDevelopmentDiseaseDisease ProgressionDoseEncapsulatedEngraftmentExcisionGenerationsGlioblastomaGoalsImmunologicsImmunosuppressionImmunotherapyImplantInfusion proceduresInterleukin-2InterleukinsIntraventricularKineticsLiquid substanceMalignant neoplasm of brainMediatingMedicalMethodsModalityModelingNatureNon-Hodgkin&aposs LymphomaOperative Surgical ProceduresOrganPatient IsolationPatientsPeripheral Blood Mononuclear CellPhenotypePreparationPrimary Brain NeoplasmsProliferatingPropertyPublic HealthPublishingRadiation therapyRecurrenceRecurrent tumorResectedRetroviral VectorRetroviridaeRheologyRouteSolidSolid NeoplasmSpeedStructureSurgically-Created Resection CavitySwellingSymptomsT cell infiltrationT-Cell ActivationT-LymphocyteTechnologyTestingTherapeuticTimeToxic effectTranslatingTranslationsTreatment EfficacyViralVirusbiomaterial compatibilitybioscaffoldcellular transductionchimeric antigen receptorchimeric antigen receptor T cellsclinical applicationclinical translationcostdensityefficacy evaluationengineered T cellsimplantationimprovedin vivoinnovationmanufacturemanufacturing processmultidisciplinaryneurosurgeryoverexpressionpatient populationpre-clinicalpreclinical trialpreventresponsescaffoldsuccesstechnology platformtemozolomidetherapeutic targettooltumortumor progressionventricular system
项目摘要
PROJECT SUMMARY
Glioblastoma multiforme (GBM) is a fatal and difficult to treat brain tumor with a dismal median survival of less
than 2 years. Standard therapy consists of surgical tumor resection, radiotherapy, and temozolomide, which only
delay tumor recurrence. Recent success of CAR T cell therapy against Non-Hodgkin’s Lymphomas have gener-
ated significant excitement for the application of CAR T cells in GBM and several clinical trials have demonstrated
efficacy of CAR T cells in patients with GBM. However, both immunosuppression and the blood brain barrier act
as major impediments limiting CAR T cell efficacy in glioblastoma. Preclinical trials with localized administration
for CAR T cells via intratumoral or intraventricular routes enhance CAR T cell infiltration to brain tumor and
outperforms i.v. infusions. With locoregional control, CAR T cells are infused into the resected tumor cavity,
followed by repeated infusions into the ventricular system. Multiple administrations are necessary to maintain a
larger dose of CAR T cells without causing toxicity and to enhance persistence of functional CAR T cells over a
longer time. However, this repetitive dosing is a major obstacle to clinical translation of CAR T cells against GBM.
CAR T cell manufacturing takes weeks and carries high costs - ~$500,000 per dose. The long manufacturing
time creates delays of weeks to months to infuse CAR T cells to patients with rapidly progressing disease.
Additionally, lengthy ex vivo manipulations create CAR T cells with heterogeneous composition and terminal
differentiation, limiting their engraftment and persistence. Taken together, the many shortfalls of current CAR T
cell manufacturing urgently demand development of innovative tools to reduce manufacturing time and provide
optimal CAR T cell phenotype and distribution. In this proposal, we describe the application of Multifunctional
Alginate Scaffold for T cell Engineering and Release (MASTER) for use in GBM. MASTER will be implanted in
the surgical cavity of GBM to generate and release CAR T cells in vivo with improved efficacy and persistence.
Based on significant published and preliminary data, we show that MASTER provides bio-instructive ques to
activate, transduce, expand, and release fully functional CAR T cells in vivo. The scaffold includes anchored
activating antibodies and interleukins to guarantee T cell activation and proliferation. Scaffold macroporosity
facilitates homogeneous distribution of T cells, creates an interface for interaction between viruses and T cells,
and enables in vivo release of fully functional CAR T cells. MASTER reduces CAR T manufacturing times from
weeks to a single day, substantially reducing costs. We demonstrate in preliminary data and propose further that
MASTER seeded with naïve PBMCs and anti-B7H3 CAR-encoding retrovirus will be implanted in the resection
cavity of a brain tumor. B7H3 is overexpressed in brain tumors and serves as a promising therapeutic target for
CAR T cell therapy. This approach could have enormous clinical impact by significantly reducing therapy costs
and dramatically expanding the patient population benefiting from CAR T cell therapy. These studies will provide
a foundational technology platform for CAR T cell manufacturing and promote widespread patient access.
项目总结
摘要多形性胶质母细胞瘤是一种致命且难于治疗的脑肿瘤,中位生存期较低。
不只是两年。标准治疗包括手术切除肿瘤、放射治疗和替莫唑胺,这只是
延缓肿瘤复发。最近CAR T细胞治疗非霍奇金淋巴瘤的成功有更多的基因。
CAR T细胞在GBM中的应用引起了极大的兴奋,几项临床试验表明
CAR T细胞在GBM患者中的疗效。然而,免疫抑制和血脑屏障都起作用。
作为限制CAR T细胞在胶质母细胞瘤中疗效的主要障碍。局部给药的临床前试验
对于通过瘤内或脑室途径的CAR T细胞,增强CAR T细胞对脑瘤的侵袭和
胜过静脉注射。输液。在局部区域控制下,CAR T细胞被注入切除的肿瘤腔内,
然后反复向脑室系统输液。多个行政当局是必要的,以维持
更大剂量的CAR T细胞而不会造成毒性,并增强功能CAR T细胞在
更长的时间。然而,这种重复给药是临床上将CAR T细胞转化为抗GBM的主要障碍。
汽车T细胞的制造需要几周的时间,而且成本很高--每剂大约50万美元。漫长的制造业
时间造成了数周到数月的延迟,无法将CAR T细胞注入患有快速进展的疾病的患者。
此外,长时间的体外操作会产生具有不同组成和终末的CAR T细胞
分化,限制了它们的植入性和持久性。综上所述,目前T型车的许多不足之处
单元制造迫切需要开发创新工具,以缩短制造时间并提供
最佳CAR T细胞表型和分布。在本方案中,我们描述了多功能的应用
用于T细胞工程和释放的藻酸盐支架(主),用于GBM。师父将被植入
手术腔内的GBM能够在体内产生和释放CAR T细胞,具有更好的疗效和持久性。
基于大量已发表的和初步的数据,我们表明,师父为人类提供了生物教学问题。
体内激活、转导、扩增和释放功能齐全的CAR T细胞。脚手架包括锚定的
激活抗体和白介素来保证T细胞的激活和增殖。支架大孔率
促进T细胞的均匀分布,为病毒和T细胞之间的相互作用创造了一个接口,
并能在体内释放全功能的CAR T细胞。Master将汽车T的制造时间从
从几周减少到一天,大大降低了成本。我们在初步数据中论证并进一步提出
植入幼稚PBMCs和抗B7H3CAR编码逆转录病毒的母体将被植入切除
脑瘤的空洞。B7H3在脑瘤中过表达,有望成为治疗脑肿瘤的靶点
汽车T细胞疗法。这种方法可以显著降低治疗成本,从而产生巨大的临床影响。
并极大地扩大了受益于CAR T细胞治疗的患者群体。这些研究将提供
一个汽车T细胞制造的基础技术平台,并促进广泛的患者接触。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pritha Agarwalla其他文献
Pritha Agarwalla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Étude des interactions de sorption et de séquestration de polluants sur des alginates
海藻酸盐污染物吸附与封存相互作用研究
- 批准号:
571945-2022 - 财政年份:2022
- 资助金额:
$ 58.8万 - 项目类别:
University Undergraduate Student Research Awards
Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
- 批准号:
9910390 - 财政年份:2018
- 资助金额:
$ 58.8万 - 项目类别:
Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
- 批准号:
10402773 - 财政年份:2018
- 资助金额:
$ 58.8万 - 项目类别:
ALGIPRO - Alginates by Production Scale Fermentation and Epimerisation
ALGIPRO - 通过生产规模发酵和差向异构化生产海藻酸盐
- 批准号:
102148 - 财政年份:2016
- 资助金额:
$ 58.8万 - 项目类别:
Collaborative R&D














{{item.name}}会员




