Bioinstructive Scaffolds for Potent and Affordable CAR-T Cell Therapy Against Brain Tumors
用于有效且经济实惠的针对脑肿瘤的 CAR-T 细胞疗法的生物指导支架
基本信息
- 批准号:10800468
- 负责人:
- 金额:$ 58.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AftercareAlginatesAntibodiesAntigensB lymphoid malignancyBiocompatible MaterialsBloodBlood - brain barrier anatomyBrainBrain NeoplasmsCAR T cell therapyCD276 geneCD28 geneCellsClinicClinicalClinical TrialsClinical Trials DesignDataDevelopmentDiseaseDisease ProgressionDoseEncapsulatedEngraftmentExcisionGenerationsGlioblastomaGoalsImmunologicsImmunosuppressionImmunotherapyImplantInfusion proceduresInterleukin-2InterleukinsIntraventricularKineticsLiquid substanceMalignant neoplasm of brainMediatingMedicalMethodsModalityModelingNatureNon-Hodgkin&aposs LymphomaOperative Surgical ProceduresOrganPatient IsolationPatientsPeripheral Blood Mononuclear CellPhenotypePreparationPrimary Brain NeoplasmsProliferatingPropertyPublic HealthPublishingRadiation therapyRecurrenceRecurrent tumorResectedRetroviral VectorRetroviridaeRheologyRouteSolidSolid NeoplasmSpeedStructureSurgically-Created Resection CavitySwellingSymptomsT cell infiltrationT-Cell ActivationT-LymphocyteTechnologyTestingTherapeuticTimeToxic effectTranslatingTranslationsTreatment EfficacyViralVirusbiomaterial compatibilitybioscaffoldcellular transductionchimeric antigen receptorchimeric antigen receptor T cellsclinical applicationclinical translationcostdensityefficacy evaluationengineered T cellsimplantationimprovedin vivoinnovationmanufacturemanufacturing processmultidisciplinaryneurosurgeryoverexpressionpatient populationpre-clinicalpreclinical trialpreventresponsescaffoldsuccesstechnology platformtemozolomidetherapeutic targettooltumortumor progressionventricular system
项目摘要
PROJECT SUMMARY
Glioblastoma multiforme (GBM) is a fatal and difficult to treat brain tumor with a dismal median survival of less
than 2 years. Standard therapy consists of surgical tumor resection, radiotherapy, and temozolomide, which only
delay tumor recurrence. Recent success of CAR T cell therapy against Non-Hodgkin’s Lymphomas have gener-
ated significant excitement for the application of CAR T cells in GBM and several clinical trials have demonstrated
efficacy of CAR T cells in patients with GBM. However, both immunosuppression and the blood brain barrier act
as major impediments limiting CAR T cell efficacy in glioblastoma. Preclinical trials with localized administration
for CAR T cells via intratumoral or intraventricular routes enhance CAR T cell infiltration to brain tumor and
outperforms i.v. infusions. With locoregional control, CAR T cells are infused into the resected tumor cavity,
followed by repeated infusions into the ventricular system. Multiple administrations are necessary to maintain a
larger dose of CAR T cells without causing toxicity and to enhance persistence of functional CAR T cells over a
longer time. However, this repetitive dosing is a major obstacle to clinical translation of CAR T cells against GBM.
CAR T cell manufacturing takes weeks and carries high costs - ~$500,000 per dose. The long manufacturing
time creates delays of weeks to months to infuse CAR T cells to patients with rapidly progressing disease.
Additionally, lengthy ex vivo manipulations create CAR T cells with heterogeneous composition and terminal
differentiation, limiting their engraftment and persistence. Taken together, the many shortfalls of current CAR T
cell manufacturing urgently demand development of innovative tools to reduce manufacturing time and provide
optimal CAR T cell phenotype and distribution. In this proposal, we describe the application of Multifunctional
Alginate Scaffold for T cell Engineering and Release (MASTER) for use in GBM. MASTER will be implanted in
the surgical cavity of GBM to generate and release CAR T cells in vivo with improved efficacy and persistence.
Based on significant published and preliminary data, we show that MASTER provides bio-instructive ques to
activate, transduce, expand, and release fully functional CAR T cells in vivo. The scaffold includes anchored
activating antibodies and interleukins to guarantee T cell activation and proliferation. Scaffold macroporosity
facilitates homogeneous distribution of T cells, creates an interface for interaction between viruses and T cells,
and enables in vivo release of fully functional CAR T cells. MASTER reduces CAR T manufacturing times from
weeks to a single day, substantially reducing costs. We demonstrate in preliminary data and propose further that
MASTER seeded with naïve PBMCs and anti-B7H3 CAR-encoding retrovirus will be implanted in the resection
cavity of a brain tumor. B7H3 is overexpressed in brain tumors and serves as a promising therapeutic target for
CAR T cell therapy. This approach could have enormous clinical impact by significantly reducing therapy costs
and dramatically expanding the patient population benefiting from CAR T cell therapy. These studies will provide
a foundational technology platform for CAR T cell manufacturing and promote widespread patient access.
项目概要
多形性胶质母细胞瘤 (GBM) 是一种致命且难以治疗的脑肿瘤,中位生存期很低
超过2年。标准治疗包括手术肿瘤切除、放射治疗和替莫唑胺,仅
延缓肿瘤复发。最近,CAR T 细胞疗法在治疗非霍奇金淋巴瘤方面取得了成功,引起了广泛关注。
CAR T 细胞在 GBM 中的应用引起了极大的兴奋,多项临床试验已经证明
CAR T 细胞在 GBM 患者中的疗效。然而,免疫抑制和血脑屏障都会起作用
是限制 CAR T 细胞在胶质母细胞瘤中疗效的主要障碍。局部给药的临床前试验
CAR T 细胞通过肿瘤内或脑室内途径增强 CAR T 细胞对脑肿瘤的浸润,
优于静脉注射输液。通过局部区域控制,CAR T 细胞被注入切除的肿瘤腔中,
随后重复输注至心室系统。需要多次管理才能维持
更大剂量的 CAR T 细胞不会引起毒性,并增强功能性 CAR T 细胞的持久性
更长的时间。然而,这种重复给药是针对 GBM 的 CAR T 细胞临床转化的主要障碍。
CAR T 细胞的制造需要数周时间,并且成本高昂——每剂约 500,000 美元。漫长的制造
向疾病快速进展的患者输注 CAR T 细胞的时间会导致数周至数月的延迟。
此外,长时间的离体操作创造出具有异质成分和末端的 CAR T 细胞。
分化,限制了它们的植入和持久性。综合来看,目前CAR T存在诸多不足
电池制造迫切需要开发创新工具来缩短制造时间并提供
最佳的 CAR T 细胞表型和分布。在这个提案中,我们描述了多功能的应用
用于 T 细胞工程和释放 (MASTER) 的藻酸盐支架,用于 GBM。 MASTER将被植入
GBM 的手术腔在体内生成和释放 CAR T 细胞,具有更高的功效和持久性。
根据已发表的重要数据和初步数据,我们表明 MASTER 提供了生物指导性问题
在体内激活、转导、扩增和释放功能齐全的 CAR T 细胞。脚手架包括锚固
激活抗体和白介素,保证 T 细胞活化和增殖。支架大孔率
促进 T 细胞的均匀分布,创建病毒和 T 细胞之间相互作用的界面,
并能够在体内释放功能齐全的 CAR T 细胞。 MASTER 将 CAR T 制造时间缩短
几周到一天,大大降低了成本。我们用初步数据证明并进一步提出
接种初始 PBMC 和抗 B7H3 CAR 编码逆转录病毒的 MASTER 将被植入切除区域
脑肿瘤的空腔。 B7H3 在脑肿瘤中过度表达,可作为脑肿瘤的有希望的治疗靶点
CAR T 细胞疗法。这种方法可以通过显着降低治疗成本来产生巨大的临床影响
并大幅扩大受益于 CAR T 细胞疗法的患者群体。这些研究将提供
CAR T 细胞制造的基础技术平台,并促进广泛的患者获取。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pritha Agarwalla其他文献
Pritha Agarwalla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Étude des interactions de sorption et de séquestration de polluants sur des alginates
海藻酸盐污染物吸附与封存相互作用研究
- 批准号:
571945-2022 - 财政年份:2022
- 资助金额:
$ 58.8万 - 项目类别:
University Undergraduate Student Research Awards
Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
- 批准号:
9910390 - 财政年份:2018
- 资助金额:
$ 58.8万 - 项目类别:
Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
- 批准号:
10402773 - 财政年份:2018
- 资助金额:
$ 58.8万 - 项目类别:
ALGIPRO - Alginates by Production Scale Fermentation and Epimerisation
ALGIPRO - 通过生产规模发酵和差向异构化生产海藻酸盐
- 批准号:
102148 - 财政年份:2016
- 资助金额:
$ 58.8万 - 项目类别:
Collaborative R&D














{{item.name}}会员




