Molecular basis of bacterial chromosome segregation and organization
细菌染色体分离和组织的分子基础
基本信息
- 批准号:10799361
- 负责人:
- 金额:$ 14.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseAccountingBacteriaBacterial ChromosomesBindingBinding ProteinsBiological AssayBiologyCTPaseCellular biologyChromatin LoopChromosome SegregationChromosome StructuresChromosomesClosure by clampComplexCytidineDNADNA SequenceDNA StructureDNA-Binding ProteinsDNA-Protein InteractionDataDiseaseEnvironmentEnzymesFutureGenetic TranscriptionGenome StabilityGoalsHydrolysisImmunoprecipitationIn VitroLaboratoriesLinkMaintenanceMalignant NeoplasmsMeasurementModelingMolecularNatureProteinsReplication OriginResearchRoleSiteSlideSurface Plasmon ResonanceSystemTechniquesTheoretical modelThinkingVariantWorkcofactordaughter cellgenetic informationin vivonovelprogramsprotein complexrecruitsingle moleculetranslational geneticstripolyphosphate
项目摘要
PROJECT SUMMARY/ABSTRACT
A fundamental problem in cell biology is understanding how DNAs are structured by compaction in the densely
packed cellular environment, and accurately passed down to daughter cells. Chromosome-associated proteins
are key factors in dynamically and accurately organizing chromosomes, and directly influence the replication,
transcription, and translation of genetic information. As such, many diseases including various cancers are linked
to malfunctioning of chromosome-associated proteins. In a majority of bacteria, ParABS partitioning system and
structural maintenance of chromosomes (SMC) protein complex are main contributors for chromosome
segregation and organization. The ParABS system is composed of ATPase variant ParA, short palindromic DNA
sequence parS, and parS-binding protein ParB. The parS sites are located in the vicinity of bacterial origin of
replication. A longstanding conundrum in the chromosome biology field is that ParB proteins are not only found
on the parS sites but also associate extensive (10-20 kb) flanking regions – a phenomenon termed spreading. It
had been attributed to the ability of ParB protein to bridge different segments of DNA, that allows long-distance
interactions. A new way of thinking derived from recent discoveries that ParB protein is not merely a DNA binding
protein but also a novel CTPase enzyme. It was proposed that cytidine triphosphate (CTP) binding to the ParS
and its subsequent hydrolysis cycle drives self-loading of ParS onto parS sites and subsequent sliding away
from the loading sites. However, this “clamp and sliding” model alone has limitations in accounting for in vivo
chromosome immunoprecipitation data. Another critical role of ParB proteins is that they recruit SMC protein
complex to the vicinity of the replication origin. However, little has been known about the SMC protein recruitment
mechanism. Once recruited, bacterial SMC is thought to organize DNAs by actively extruding DNA loops. This
simple mechanism that can explain many aspects of chromosome structuring is required to be demonstrated
with bacterial SMC complex. The PI has almost 15 years of single-molecule techniques expertise and his lab is
devoted to elucidating the mechanisms of various DNA-binding proteins and their impacts on chromosome
structure. During the next five years, the PI’s laboratory will tackle the outstanding problems of underlying ParB
and bacterial SMC working mechanisms and their interplays utilizing his single-molecule approaches and newly
acquired surface plasmon resonance (SPR)-based expertise. Information one could extract from those proteins
in traditional biology approaches is possibly averaged out due to the nature of simultaneous measurements of
multiple proteins (ensemble measurements). Our approach will be expected to uncover hidden mechanisms with
unprecedented details. The in vitro results will be corroborated by in vivo-based assays and theoretical modeling.
The proposed work will pave the way for other future DNA-protein interaction studies. The long-term goal of the
PI’s research program is to elucidate how different DNA-binding proteins and their cofactors cooperate to
maintain the genome stability and dynamics.
项目摘要/摘要
细胞生物学中的一个基本问题是理解DNA是如何通过致密的
包装细胞环境,并准确地传递到子细胞。染色体相关蛋白
是动态准确组织染色体的关键因素,直接影响复制,
基因信息的转录和翻译。因此,包括各种癌症在内的许多疾病都是相互关联的
与染色体相关蛋白的故障有关。在大多数细菌中,ParABS分配系统和
染色体的结构维持(SMC)蛋白复合体是染色体的主要贡献者
种族隔离和组织。ParABS系统由ATPase变异体ParA、短回文DNA组成
序列PARS和PARS结合蛋白PARB。PARS位置位于细菌起源的附近
复制。染色体生物学领域的一个长期难题是,PARB蛋白不仅存在于
在PARS位点上,但也关联广泛的(10-20kb)侧翼区域-一种称为扩散的现象。它
已经被归因于PARB蛋白连接不同DNA片段的能力,这使得长距离
互动。一种新的思维方式源于最近的发现,即PARB蛋白不仅仅是DNA结合
蛋白质,也是一种新型的CTPase酶。有人认为,胞苷三磷酸(CTP)与PARs结合
其随后的水解循环驱动PARs自身加载到PARs位置并随后滑动离开
从装货地点运来。然而,这种“夹住和滑动”模型本身在解释活体模型方面存在局限性。
染色体免疫沉淀数据。PARB蛋白的另一个关键作用是它们招募SMC蛋白
复制起始点附近的复合体。然而,对SMC蛋白的募集知之甚少。
机制。一旦被招募,细菌SMC被认为通过主动挤出DNA环来组织DNA。这
需要证明可以解释染色体结构的许多方面的简单机制。
与细菌SMC复合体。PI拥有近15年的单分子技术专业知识,他的实验室是
致力于阐明各种DNA结合蛋白的机制及其对染色体的影响
结构。在未来五年,PI的实验室将解决潜在的PARB的突出问题
和细菌SMC的作用机制及其相互作用
获得基于表面等离子体共振(SPR)的专业知识。人们可以从这些蛋白质中提取的信息
在传统的生物学方法中,由于同时测量的性质,可能会取平均值
多种蛋白质(整体测量)。我们的方法将有望发现隐藏的机制
史无前例的细节。体外实验结果将通过基于体内的分析和理论建模得到证实。
这项拟议的工作将为未来的其他DNA-蛋白质相互作用研究铺平道路。中国的长期目标是
Pi的研究计划是阐明不同的DNA结合蛋白及其辅助因子是如何协同作用的
保持基因组的稳定性和动态平衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HYEONGJUN KIM其他文献
HYEONGJUN KIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HYEONGJUN KIM', 18)}}的其他基金
Molecular basis of bacterial chromosome segregation and organization
细菌染色体分离和组织的分子基础
- 批准号:
10277063 - 财政年份:2021
- 资助金额:
$ 14.09万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 14.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 14.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 14.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 14.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 14.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 14.09万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 14.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 14.09万 - 项目类别:














{{item.name}}会员




