Molecular basis of bacterial chromosome segregation and organization
细菌染色体分离和组织的分子基础
基本信息
- 批准号:10799361
- 负责人:
- 金额:$ 14.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseAccountingBacteriaBacterial ChromosomesBindingBinding ProteinsBiological AssayBiologyCTPaseCellular biologyChromatin LoopChromosome SegregationChromosome StructuresChromosomesClosure by clampComplexCytidineDNADNA SequenceDNA StructureDNA-Binding ProteinsDNA-Protein InteractionDataDiseaseEnvironmentEnzymesFutureGenetic TranscriptionGenome StabilityGoalsHydrolysisImmunoprecipitationIn VitroLaboratoriesLinkMaintenanceMalignant NeoplasmsMeasurementModelingMolecularNatureProteinsReplication OriginResearchRoleSiteSlideSurface Plasmon ResonanceSystemTechniquesTheoretical modelThinkingVariantWorkcofactordaughter cellgenetic informationin vivonovelprogramsprotein complexrecruitsingle moleculetranslational geneticstripolyphosphate
项目摘要
PROJECT SUMMARY/ABSTRACT
A fundamental problem in cell biology is understanding how DNAs are structured by compaction in the densely
packed cellular environment, and accurately passed down to daughter cells. Chromosome-associated proteins
are key factors in dynamically and accurately organizing chromosomes, and directly influence the replication,
transcription, and translation of genetic information. As such, many diseases including various cancers are linked
to malfunctioning of chromosome-associated proteins. In a majority of bacteria, ParABS partitioning system and
structural maintenance of chromosomes (SMC) protein complex are main contributors for chromosome
segregation and organization. The ParABS system is composed of ATPase variant ParA, short palindromic DNA
sequence parS, and parS-binding protein ParB. The parS sites are located in the vicinity of bacterial origin of
replication. A longstanding conundrum in the chromosome biology field is that ParB proteins are not only found
on the parS sites but also associate extensive (10-20 kb) flanking regions – a phenomenon termed spreading. It
had been attributed to the ability of ParB protein to bridge different segments of DNA, that allows long-distance
interactions. A new way of thinking derived from recent discoveries that ParB protein is not merely a DNA binding
protein but also a novel CTPase enzyme. It was proposed that cytidine triphosphate (CTP) binding to the ParS
and its subsequent hydrolysis cycle drives self-loading of ParS onto parS sites and subsequent sliding away
from the loading sites. However, this “clamp and sliding” model alone has limitations in accounting for in vivo
chromosome immunoprecipitation data. Another critical role of ParB proteins is that they recruit SMC protein
complex to the vicinity of the replication origin. However, little has been known about the SMC protein recruitment
mechanism. Once recruited, bacterial SMC is thought to organize DNAs by actively extruding DNA loops. This
simple mechanism that can explain many aspects of chromosome structuring is required to be demonstrated
with bacterial SMC complex. The PI has almost 15 years of single-molecule techniques expertise and his lab is
devoted to elucidating the mechanisms of various DNA-binding proteins and their impacts on chromosome
structure. During the next five years, the PI’s laboratory will tackle the outstanding problems of underlying ParB
and bacterial SMC working mechanisms and their interplays utilizing his single-molecule approaches and newly
acquired surface plasmon resonance (SPR)-based expertise. Information one could extract from those proteins
in traditional biology approaches is possibly averaged out due to the nature of simultaneous measurements of
multiple proteins (ensemble measurements). Our approach will be expected to uncover hidden mechanisms with
unprecedented details. The in vitro results will be corroborated by in vivo-based assays and theoretical modeling.
The proposed work will pave the way for other future DNA-protein interaction studies. The long-term goal of the
PI’s research program is to elucidate how different DNA-binding proteins and their cofactors cooperate to
maintain the genome stability and dynamics.
项目摘要/摘要
细胞生物学的一个基本问题是了解DNA如何通过密集的压实构造
挤满了细胞环境,并准确地传递给子细胞。染色体相关蛋白
是动态和准确组织染色体的关键因素,并直接影响复制,
转录和遗传信息的翻译。因此,许多疾病包括各种癌症
与染色体相关蛋白的功能故障。在大多数细菌中,parabs分区系统和
染色体的结构维持(SMC)蛋白质复合物是染色体的主要贡献者
隔离和组织。 Parabs系统由ATPase变体Para组成
序列PAR和PARS结合蛋白PAR。 pars位置位于细菌起源附近
复制。染色体生物学领域中长期存在的难题是PARB蛋白不仅被发现
在pars站点上,但也将广泛的(10-20 kb)侧翼区域关联 - 一种现象术语扩散。它
已归因于PARB蛋白桥接不同DNA段的能力,这可以长距离
互动。最近发现的一种新的思维方式,即PARB蛋白不仅是DNA结合
蛋白质也是一种新型的CTPase酶。有人提出,三磷酸胞苷(CTP)与PARS结合
随后的水解周期将PARS自动加载到PARS位点,然后滑行
从加载站点。但是,单独的“夹具和滑动”模型在体内会计局限
染色体免疫沉淀数据。 PARB蛋白的另一个关键作用是它们募集SMC蛋白
复杂起源附近的复杂性。但是,关于SMC蛋白募集的知之甚少
机制。一旦招募,细菌SMC被认为通过主动挤出DNA环会组织DNA。这
可以证明可以解释染色体结构的许多方面的简单机制
与细菌SMC复合物。 PI具有将近15年的单分子技术专业知识,他的实验室是
致力于阐明各种DNA结合蛋白的机制及其对染色体的影响
结构。在接下来的五年中,PI的实验室将解决基本的问题
和细菌SMC的工作机制及其相互作用,利用他的单分子方法和新的
获得的表面等离子体共振(SPR)的专业知识。可以从这些蛋白质中提取的信息
在传统的生物学方法中,由于同时测量的性质,很可能会平均
多种蛋白质(集合测量)。我们的方法将有望与
空前的细节。基于体内的测定和理论建模将证实体外结果。
拟议的工作将为其他未来的DNA蛋白相互作用研究铺平道路。长期目标
PI的研究计划是阐明不同的DNA结合蛋白及其辅助因子如何合作
保持基因组稳定性和动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HYEONGJUN KIM其他文献
HYEONGJUN KIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HYEONGJUN KIM', 18)}}的其他基金
Molecular basis of bacterial chromosome segregation and organization
细菌染色体分离和组织的分子基础
- 批准号:
10277063 - 财政年份:2021
- 资助金额:
$ 14.09万 - 项目类别:
相似国自然基金
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
会计师事务所数字化能力构建:动机、经济后果及作用机制
- 批准号:72372028
- 批准年份:2023
- 资助金额:42.00 万元
- 项目类别:面上项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
- 批准号:72362001
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332002
- 批准年份:2023
- 资助金额:165.00 万元
- 项目类别:重点项目
相似海外基金
Molecular basis of bacterial chromosome segregation and organization
细菌染色体分离和组织的分子基础
- 批准号:
10277063 - 财政年份:2021
- 资助金额:
$ 14.09万 - 项目类别:
Molecular basis of virulence in the emerging pathogen Kingella kingae
新发病原体 Kingella kingae 毒力的分子基础
- 批准号:
8731463 - 财政年份:2013
- 资助金额:
$ 14.09万 - 项目类别:
Mechanistic Studies of Replication Initiation in Prokaryotes
原核生物复制起始的机制研究
- 批准号:
10189628 - 财政年份:2005
- 资助金额:
$ 14.09万 - 项目类别: