SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
基本信息
- 批准号:10814620
- 负责人:
- 金额:$ 29.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmic SoftwareArchitectureAxonBiomechanicsBrainBrain DiseasesBrain imagingCephalicChildChildhoodClinicalComputer ModelsComputer SimulationCoupledDataDescriptorDevelopmentDiagnosisElectronic Medical Records and Genomics NetworkFiberGoalsGrowthHeterogeneityHumanImageIndividualInterventionKnowledgeLongevityMachine LearningMagnetic Resonance ImagingMechanicsMicroscopicModelingNeurodevelopmental DisorderOutcome StudyPatternPlayProcessPropertyPublic HealthReportingReproducibilityResearchRoleScientific Advances and AccomplishmentsStructural defectStructureSurfaceTestingUnited StatesWorkautism spectrum disorderbrain abnormalitiesbrain basedbrain healthbrain magnetic resonance imagingcomputerized toolsdata modelingdensitydisabilityfetalgray matterinfancyinnovationmechanical propertiesmodel buildingmulti-scale modelingneuroimagingnovelpersonalized predictionspreservationsimulationwhite matter
项目摘要
Autism spectrum disorder (ASD) affects up to 1% of children in the United States, resulting in significant
lifelong disability for the majority of those affected. Prior neuroimaging studies are limited to groupwise
analysis between ASD and controls, which cannot differentiate or disentangle cortical abnormality from
variability for a specific ASD subject. These difficulties originate from a lack of a novel brain structural
descriptor that can effectively represent the human brain architectures of each individual and extract brain
structural commonalities across individuals. Meanwhile, prior studies have demonstrated that mechanical
factors play important roles in the formation of brain architecture, including abnormalities observed in ASD.
Current brain mechanical models build upon simplified models with a focus on one specific mechanical
effort, but fail to explicitly capture the physical complexity of brain models and the interplay of multiple
mechanical factors simultaneously. This lack of knowledge is a crucial barrier to developing unbiased
models to understand the brain structural commonalities across individuals, as well as models that can
pinpoint the abnormalities in individual ASD brain. The overall objective of this research is to construct a
transformative brain structural network (BSN) for each individual brain, disentangle BSN’s commonality and
variability across individual health brains, discover the role of mechanics on the BSN’s commonality and
variability across individuals via imaging analyses and data-driven computational simulations, and pinpoint
cortical abnormality and evaluate their relevant impact in ASD brains by comparing BSN between ASD and
healthy brains. Our central hypothesis is that the brain structural network and its underlying mechanical
principles can be interpreted through a data-driven discovery of preserved, descriptive, universal, and
evident brain structural descriptor across individuals. The goal of the proposed work will be achieved by
completing the following three specific aims: (1) we will reconstruct individual cortical surfaces to identify
and assess 3-hinge gyral junctions (3HGs) and 3HG-based brain structural network and therefore examine
brain structure commonality across individual brains; (2) we will construct data-driven fetal whole brain
models, perform massive simulations with varying mechanical conditions, and collect data for machine-learning analysis; (3) we will evaluate brain structural network’s abnormality in ASD by conducting
comparison analysis with health brain and pinpoint mechanical factors that lead to this abnormality across
individuals.
自闭症谱系障碍(ASD)影响了美国高达1%的儿童,导致了显着的
对大多数受影响的人来说是终身残疾。以前的神经影像学研究仅限于分组
ASD和对照组之间的分析,不能区分或区分皮质异常与
特定ASD受试者的变异性。这些困难源于缺乏新颖的大脑结构
描述符,可以有效地表示每个个体的人脑架构,并提取大脑
个体之间的结构共性。与此同时,先前的研究表明,
这些因素在大脑结构的形成中起着重要作用,包括在ASD中观察到的异常。
目前的脑力学模型建立在简化模型的基础上,重点是一个特定的力学模型。
努力,但未能明确捕捉大脑模型的物理复杂性和多种因素的相互作用。
机械性能同时这种知识的缺乏是发展公正的一个关键障碍
模型来了解个体之间的大脑结构共性,以及模型,
找出自闭症患者大脑的异常本研究的总体目标是构建一个
每个大脑的变革性大脑结构网络(BSN),解开BSN的共性,
个体健康大脑的差异,发现力学对BSN共性的作用,
通过成像分析和数据驱动的计算模拟,
皮质异常,并通过比较ASD和
健康的大脑。我们的中心假设是,大脑结构网络及其潜在的机械
原则可以通过数据驱动的发现来解释,这些发现是保存的,描述性的,普遍的,
明显的大脑结构描述符。拟议工作的目标将通过以下方式实现:
完成以下三个具体目标:(1)我们将重建单个皮质表面,以识别
并评估3-铰链脑回连接(3 HG)和基于3 HG的脑结构网络,
个体大脑的大脑结构共性;(2)我们将构建数据驱动的胎儿全脑
模型,在不同的力学条件下进行大量的模拟,并收集数据进行机器学习分析;(3)我们将通过进行评估ASD患者大脑结构网络的异常,
与健康大脑的比较分析,并查明导致这种异常的机械因素,
个体
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xianqiao Wang其他文献
Xianqiao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
- 批准号:
133416 - 财政年份:2018
- 资助金额:
$ 29.35万 - 项目类别:
Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
- 批准号:
0916351 - 财政年份:2009
- 资助金额:
$ 29.35万 - 项目类别:
Standard Grant